scholarly journals The redox potential interferes with the expression of laminin binding molecules in Bacteroides fragilis

2008 ◽  
Vol 103 (7) ◽  
pp. 683-689 ◽  
Author(s):  
Eliane de Oliveira Ferreira ◽  
Edwin Alexander Yates ◽  
Morris Goldner ◽  
Rossiane Cláudia Vommaro ◽  
Fernando Costa e Silva Filho ◽  
...  
1997 ◽  
Vol 25 (s2) ◽  
pp. S147-S150 ◽  
Author(s):  
M. Goldner ◽  
N. Mingot ◽  
J. Ph. Emond ◽  
A. Dublanchet

Author(s):  
Michael P. Goheen ◽  
Charles E. Edmiston

The synergistic activity of antimicrobial combinants against aerobic and facultative microorganisms has been well documented. in comparison, few studies have been performed using obligate anaerobic isolates and antimicrobial combinants. For this study clinical strains of Bacteroides fragilis(BF) were selected to investigate both single/combinant drug activity and cellular morphologic changes when BF is exposed to Imipenem (I), Piperacillin (P), Cefpimizole (C), Imipenem/Piperacillin (I+P), and Imipenem/Cefpimizole (I+C).


2001 ◽  
Vol 120 (5) ◽  
pp. A195-A195
Author(s):  
J PAULA ◽  
E SPINEDI ◽  
A DUBIN ◽  
D BUSTOS ◽  
J DAVOLOS

2013 ◽  
Vol 487 ◽  
pp. 7-13 ◽  
Author(s):  
TG Gerwing ◽  
AMA Gerwing ◽  
D Drolet ◽  
DJ Hamilton ◽  
MA Barbeau

2020 ◽  
Author(s):  
Vishwanath R.S ◽  
Masa-aki Haga ◽  
Takumi Watanabe ◽  
Emilia Witkowska Nery ◽  
Martin Jönsson-Niedziolka

Here we describe the synthesis and electrochemical testing of a heteroleptic bis(tridentate) ruthenium(II) complex [Ru<sup>II</sup>(LR)(L)]<sup>0</sup> (LR =2,6-bis(1-(2-octyldodecan)benzimidazol-2-yl)pyridine, L = 2,6-bis(benzimidazolate)pyridine). It is a neutral complex which undergoes a quasireversible oxidation and reduction at relatively low potential. The newly synthetized compound was used for studies of ion-transfer at the three-phase junction because of the sensitivity of this method to cation expulsion. The [Ru<sup>II</sup>(LR)(L)]<sup>0</sup> shows exceptional stability during cycling and is sufficiently lipophilic even after oxidation to persist in the organic phase also using very hydrophilic anions such as Cl<sup>−</sup>. Given its low redox potential and strong lipophilicity this compound will be of interest as an electron donor in liquid-liquid electrochemistry.


2020 ◽  
Author(s):  
Vishwanath R.S ◽  
Masa-aki Haga ◽  
Takumi Watanabe ◽  
Emilia Witkowska Nery ◽  
Martin Jönsson-Niedziolka

Here we describe the synthesis and electrochemical testing of a heteroleptic bis(tridentate) ruthenium(II) complex [Ru<sup>II</sup>(LR)(L)]<sup>0</sup> (LR =2,6-bis(1-(2-octyldodecan)benzimidazol-2-yl)pyridine, L = 2,6-bis(benzimidazolate)pyridine). It is a neutral complex which undergoes a quasireversible oxidation and reduction at relatively low potential. The newly synthetized compound was used for studies of ion-transfer at the three-phase junction because of the sensitivity of this method to cation expulsion. The [Ru<sup>II</sup>(LR)(L)]<sup>0</sup> shows exceptional stability during cycling and is sufficiently lipophilic even after oxidation to persist in the organic phase also using very hydrophilic anions such as Cl<sup>−</sup>. Given its low redox potential and strong lipophilicity this compound will be of interest as an electron donor in liquid-liquid electrochemistry.


Sign in / Sign up

Export Citation Format

Share Document