antimicrobial susceptibility
Recently Published Documents


TOTAL DOCUMENTS

6231
(FIVE YEARS 1702)

H-INDEX

89
(FIVE YEARS 13)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262308
Author(s):  
Woyinshet Worku ◽  
Moges Desta ◽  
Tadesse Menjetta

Background Food-borne diseases related to the consumption of meat and its products had public health importance worldwide. The problem became worst in Ethiopia as the result of the tradition of eating raw cattle meat. Salmonella species and Escherichia coli are important food-borne pathogens associated with meat contamination. Hence the current study aimed to assess the prevalence and antimicrobial susceptibility of Salmonella species and Extended-spectrum β-lactamase producing Escherichia coli from raw cattle meat at butcher houses in Hawassa city, Sidama regional state, Ethiopia. Method A cross-sectional study was done on the prevalence and antimicrobial susceptibility pattern of Salmonella species and Extended-spectrum β-lactamase producing E.coli from raw cattle meat at butcher houses in Hawassa city from September to December 2020. Socio-demographic data were collected using a structured questionnaire and raw cattle meat and swab samples were collected from meat cutting equipment. The collected samples transported using icebox to Hawassa University College of Medicine and Health Sciences Microbiology Laboratory for identification. Samples were grown on different culture media and antimicrobial susceptibility tests were determined by using Kirby disc diffusion method. Data were entered and analyzed into SPSS version 23. Descriptive statistics were done and P-value < 0.05 was considered as statistically significant. Result The overall prevalence of salmonella and ESBL producing E.coli among 556 samples collected from 278 butcher houses was 36 (6.47%) (95% CI: 1.68–1.79) of which 13 (2.3%) were ESBL producing E.coli and 23(4.1%) were salmonella species. Poor hand washing practice (AOR = 2.208; 95% CI: 1.249–3.904) and touching birr while selling meat (AOR = 0.75; 95% CI: (0.433–1.299) were found to be significantly associated with the prevalence of salmonella species and E.coli on cattle meat. The isolates showed moderate levels of resistance (60–70%) against Amoxicillin/ clavulanic acid and high susceptibility (85–100%) against gentamicin, cotrimoxazole, ceftazidime, and tetracycline and the overall multidrug resistance was 33.3%. Conclusion This study revealed moderately high prevalence of salmonella and E.coli due to poor hygiene and sanitation practices in the butcher shops. Furthermore, the existence of ESBL producing E.coli isolates clearly indicate the possible threat to public health. Therefore, inspection by the right agencies must be implemented in order to prevent food-borne outbreaks and antimicrobial resistance.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262597
Author(s):  
Tebelay Dilnessa ◽  
Alem Getaneh ◽  
Workagegnehu Hailu ◽  
Feleke Moges ◽  
Baye Gelaw

Background Clostridium difficile is the leading cause of infectious diarrhea that develops in patients after hospitalization during antibiotic administration. It has also become a big issue in community-acquired diarrhea. The emergence of hypervirulent strains of C. difficile poses a major problem in hospital-associated diarrhea outbreaks and it is difficult to treat. The antimicrobial resistance in C. difficile has worsened due to the inappropriate use of broad-spectrum antibiotics including cephalosporins, clindamycin, tetracycline, and fluoroquinolones together with the emergence of hypervirulent strains. Objective To estimate the pooled prevalence and antimicrobial resistance pattern of C. difficile derived from hospitalized diarrheal patients, a systematic review and meta-analysis was performed. Methods Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline was followed to review published studies conducted. We searched bibliographic databases from PubMed, Scopus, Google Scholar, and Cochrane Library for studies on the prevalence and antimicrobial susceptibility testing on C. difficile. The weighted pooled prevalence and resistance for each antimicrobial agent was calculated using a random-effects model. A funnel plot and Egger’s regression test were used to see publication bias. Results A total of 15 studies were included. Ten articles for prevalence study and 5 additional studies for antimicrobial susceptibility testing of C. difficile were included. A total of 1967/7852 (25%) C. difficile were isolated from 10 included studies for prevalence study. The overall weighted pooled proportion (WPP) of C. difficile was 30% (95% CI: 10.0–49.0; p<0.001). The analysis showed substantial heterogeneity among studies (Cochran’s test = 7038.73, I2 = 99.87%; p<0.001). The weighed pooled antimicrobial resistance (WPR) were: vancomycin 3%(95% CI: 1.0–4.0, p<0.001); metronidazole 5%(95% CI: 3.0–7.0, p<0.001); clindamycin 61%(95% CI: 52.0–69.0, p<0.001); moxifloxacin 42%(95% CI: 29–54, p<0.001); tetracycline 35%(95% CI: 22–49, p<0.001); erythromycin 61%(95% CI: 48–75, p<0.001) and ciprofloxacin 64%(95% CI: 48–80; p< 0.001) using the random effect model. Conclusions A higher weighted pooled prevalence of C. difficile was observed. It needs a great deal of attention to decrease the prevailing prevalence. The resistance of C. difficile to metronidazole and vancomycin was low compared to other drugs used to treat C. difficile infection. Periodic antimicrobial resistance monitoring is vital for appropriate therapy of C. difficile infection.


Antibiotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 100
Author(s):  
Jolein Gyonne Elise Laumen ◽  
Saïd Abdellati ◽  
Christophe Van Dijck ◽  
Delphine Martiny ◽  
Irith De Baetselier ◽  
...  

Commensal Neisseria provide a reservoir of resistance genes that can be transferred to the pathogens Neisseria gonorrhoeae and N. meningitidis in the human oropharynx. Surveillance programs are thus needed to monitor resistance in oropharyngeal commensal Neisseria, but currently the isolation and antimicrobial susceptibility testing of these commensals is laborious, complex and expensive. In addition, the posterior oropharyngeal/tonsillar swab, which is commonly used to sample oropharyngeal Neisseria, is poorly tolerated by many individuals. We evaluated an alternative non-invasive method to isolate oropharyngeal commensal Neisseria and to detect decreased susceptibility to azithromycin using selective media (LBVT.SNR) with and without azithromycin (2 µg/mL). In this pilot study, we compared paired posterior oropharyngeal/tonsillar swabs and oral rinse-and-gargle samples from 10 participants and demonstrated that a similar Neisseria species diversity and number of colonies were isolated from both sample types. Moreover, the proportion of Neisseria colonies that had a decreased susceptibility to azithromycin was similar in the rinse samples compared to the swabs. This pilot study has produced encouraging data that a simple protocol of oral rinse-and-gargle and culture on plates selective for commensal Neisseria with and without a target antimicrobial can be used as a surveillance tool to monitor antimicrobial susceptibility in commensal oropharyngeal Neisseria. Larger studies are required to validate these findings.


2022 ◽  
Vol 12 ◽  
Author(s):  
Menglan Zhou ◽  
Ziran Wang ◽  
Li Zhang ◽  
Timothy Kudinha ◽  
Haoran An ◽  
...  

Background:Streptococcus pneumoniae is an important human pathogen that can cause severe invasive pneumococcal diseases (IPDs). The aim of this multicenter study was to investigate the serotype and sequence type (ST) distribution, antimicrobial susceptibility, and virulence of S. pneumoniae strains causing IPD in China.Methods: A total of 300 invasive S. pneumoniae isolates were included in this study. The serotype, ST, and antimicrobial susceptibility of the strains, were determined by the Quellung reaction, multi-locus sequence typing (MLST) and broth microdilution method, respectively. The virulence level of the strains in the most prevalent serotypes was evaluated by a mouse sepsis model, and the expression level of well-known virulence genes was measured by RT-PCR.Results: The most common serotypes in this study were 23F, 19A, 19F, 3, and 14. The serotype coverages of PCV7, PCV10, PCV13, and PPV23 vaccines on the strain collection were 42.3, 45.3, 73.3 and 79.3%, respectively. The most common STs were ST320, ST81, ST271, ST876, and ST3173. All strains were susceptible to ertapenem, levofloxacin, moxifloxacin, linezolid, and vancomycin, but a very high proportion (&gt;95%) was resistant to macrolides and clindamycin. Based on the oral, meningitis and non-meningitis breakpoints, penicillin non-susceptible Streptococcus pneumoniae (PNSP) accounted for 67.7, 67.7 and 4.3% of the isolates, respectively. Serotype 3 strains were characterized by high virulence levels and low antimicrobial-resistance rates, while strains of serotypes 23F, 19F, 19A, and 14, exhibited low virulence and high resistance rates to antibiotics. Capsular polysaccharide and non-capsular virulence factors were collectively responsible for the virulence diversity of S. pneumoniae strains.Conclusion: Our study provides a comprehensive insight into the epidemiology and virulence diversity of S. pneumoniae strains causing IPD in China.


2022 ◽  
Vol 10 (1) ◽  
pp. 160
Author(s):  
Susana Fernandes ◽  
Inês B. Gomes ◽  
Sérgio F. Sousa ◽  
Manuel Simões

The present study evaluates the antimicrobial susceptibility of persister cells of Bacillus cereus and Pseudomonas fluorescens after their regrowth in suspension and as biofilms. Two conventional (benzalkonium chloride—BAC and peracetic acid—PAA) and two emerging biocides (glycolic acid—GA and glyoxal—GO) were selected for this study. Persister cells resulted from biofilms subjected to a critical treatment using the selected biocides. All biocide treatments developed B. cereus persister cells, except PAA that effectively reduced the levels of vegetative cells and endospores. P. fluorescens persister cells comprise viable and viable but non-culturable cells. Afterwards, persister cells were regrown in suspension and in biofilms and were subjected to a second biocide treatment. In general, planktonic cultures of regrown persister cells in suspension lost their antimicrobial tolerance, for both bacteria. Regrown biofilms of persister cells had antimicrobial susceptibility close to those regrown biofilms of biocide-untreated cells, except for regrown biofilms of persister P. fluorescens after BAC treatment, which demonstrated increased antimicrobial tolerance. The most active biocide against persister cells was PAA, which did not promote changes in susceptibility after their regrowth. In conclusion, persister cells are ubiquitous within biofilms and survive after critical biocide treatment. The descendant planktonic and biofilms populations showed similar properties as the original ones.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Carla Rodrigues ◽  
Siddhi Desai ◽  
Virginie Passet ◽  
Devarshi Gajjar ◽  
Sylvain Brisse

The rapid emergence of multidrug-resistant Klebsiella pneumoniae is being driven largely by the spread of specific clonal groups (CGs). Of these, CG147 includes 7-gene multilocus sequence typing (MLST) sequence types (STs) ST147, ST273 and ST392. CG147 has caused nosocomial outbreaks across the world, but its global population dynamics remain unknown. Here, we report a pandrug-resistant ST147 clinical isolate from India (strain DJ) and define the evolution and global emergence of CG147. Antimicrobial-susceptibility testing following European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines and genome sequencing (Illumina and Oxford Nanopore Technologies, Unicycler assembly) were performed on strain DJ. Additionally, we collated 217 publicly available CG147 genomes [National Center for Biotechnology Information (NCBI), May 2019]. CG147 evolution was inferred within a temporal phylogenetic framework (beast) based on a recombination-free sequence alignment (Roary/Gubbins). Comparative genomic analyses focused on resistance and virulence genes and other genetic elements (BIGSdb, Kleborate, PlasmidFinder, phaster, ICEfinder and CRISPRCasFinder). Strain DJ had a pandrug-resistance phenotype. Its genome comprised the chromosome, seven plasmids and one linear phage-plasmid. Four carbapenemase genes were detected: bla NDM-5 and two copies of bla OXA-181 in the chromosome, and a second copy of bla NDM-5 on an 84 kb IncFII plasmid. CG147 genomes carried a mean of 13 acquired resistance genes or mutations; 63 % carried a carbapenemase gene and 83 % harboured bla CTX-M. All CG147 genomes presented GyrA and ParC mutations and a common subtype I-E CRISPR-Cas system. ST392 and ST273 emerged in 2005 and 1995, respectively. ST147, the most represented phylogenetic branch, was itself divided into two main clades with distinct capsular loci: KL64 (74 %, DJ included, emerged in 1994 and disseminated worldwide, with carbapenemases varying among world regions) and KL10 (20 %, emerged in 2002, predominantly found in Asian countries, associated with carbapenemases NDM and OXA-48-like). Furthermore, subclades within ST147-KL64 differed at the yersiniabactin locus, OmpK35/K36 mutations, plasmid replicons and prophages. The absence of IncF plasmids in some subclades was associated with a possible activity of a CRISPR-Cas system. K. pneumoniae CG147 comprises pandrug-resistant or extensively resistant isolates, and carries multiple and diverse resistance genes and mobile genetic elements, including chromosomal bla NDM-5. Its emergence is being driven by the spread of several phylogenetic clades marked by their own genomic features and specific temporo–spatial dynamics. These findings highlight the need for precision surveillance strategies to limit the spread of particularly concerning CG147 subsets.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jolein Gyonne Elise Laumen ◽  
Christophe Van Dijck ◽  
Saïd Abdellati ◽  
Irith De Baetselier ◽  
Gabriela Serrano ◽  
...  

AbstractNon-pathogenic Neisseria are a reservoir of antimicrobial resistance genes for pathogenic Neisseria meningitidis and Neisseria gonorrhoeae. Men who have sex with men (MSM) are at risk of co-colonization with resistant non-pathogenic and pathogenic Neisseria. We assessed if the antimicrobial susceptibility of non-pathogenic Neisseria among MSM differs from a general population and if antimicrobial exposure impacts susceptibility. We recruited 96 participants at our center in Belgium: 32 employees, 32 MSM who did not use antibiotics in the previous 6 months, and 32 MSM who did. Oropharyngeal Neisseria were cultured and identified with MALDI-TOF–MS. Minimum inhibitory concentrations for azithromycin, ceftriaxone and ciprofloxacin were determined using E-tests® and compared between groups with non-parametric tests. Non-pathogenic Neisseria from employees as well as MSM were remarkably resistant. Those from MSM were significantly less susceptible than employees to azithromycin and ciprofloxacin (p < 0.0001, p < 0.001), but not ceftriaxone (p = 0.3). Susceptibility did not differ significantly according to recent antimicrobial exposure in MSM. Surveilling antimicrobial susceptibility of non-pathogenic Neisseria may be a sensitive way to assess impact of antimicrobial exposure in a population. The high levels of antimicrobial resistance in this survey indicate that novel resistance determinants may be readily available for future transfer from non-pathogenic to pathogenic Neisseria.


2022 ◽  
Vol 10 (1) ◽  
pp. 125
Author(s):  
Alexandra Wolff ◽  
Arne C. Rodloff ◽  
Paul Vielkind ◽  
Toralf Borgmann ◽  
Catalina-Suzana Stingu

Actinomyces species play an important role in the pathogenesis of oral diseases and infections. Susceptibility testing is not always routinely performed, and one may oversee a shift in resistance patterns. The aim of the study was to analyze the antimicrobial susceptibility of 100 well-identified clinical oral isolates of Actinomyces spp. against eight selected antimicrobial agents using the agar dilution (AD) and E-Test (ET) methods. We observed no to low resistance against penicillin, ampicillin-sulbactam, meropenem, clindamycin, linezolid and tigecycline (0–2% ET, 0% AD) but high levels of resistance to moxifloxacin (93% ET, 87% AD) and daptomycin (83% ET, 95% AD). The essential agreement of the two methods was very good for benzylpenicillin (EA 95%) and meropenem (EA 92%). The ET method was reliable for correctly categorizing susceptibility, in comparison with the reference method agar dilution, except for daptomycin (categorical agreement 87%). Penicillin is still the first-choice antibiotic for therapy of diseases caused by Actinomyces spp.


Sign in / Sign up

Export Citation Format

Share Document