scholarly journals Scale-up of dextransucrase production by Leuconostoc mesenteroides in fed batch fermentation

2003 ◽  
Vol 46 (3) ◽  
pp. 455-459 ◽  
Author(s):  
Georgina L. Michelena ◽  
Aidín Martínez ◽  
Antonio Bell ◽  
Emilia Carrera ◽  
Roxana Valencia

Fed batch fermentation was carried out for the dextransucrase enzyme production from Leuconostoc mesenteroides and the production was scale-up using oxygen transfer criteriuom. It was found that in 5 L vessel fermentation capacity, the best agitation speed was 225 min-1 and aeration rate was 0.15 vvm, obtaining dextransucrase activity of 127 DSU/mL.. The maximum enzyme production velocity coincide with the maximum growth velocity between 6 and 7 h of fermentation, which confirmed that dextransucrase production was associated with microbial growth. High enzyme yields were achieved during scale up based on oxygen transfer rate.

2021 ◽  
Vol 26 (2) ◽  
pp. 2464-2470
Author(s):  
ANCA-IRINA GALACTION ◽  
◽  
ALEXANDRA CRISTINA BLAGA ◽  
ALEXANDRA TUCALIUC ◽  
LENUŢA KLOETZER ◽  
...  

The previous studies on ergosterol production by Saccharomyces cerevisiae in presence of n-dodecane as oxygen-vector have been continued by mathematical modelling the fermentation process. In this purpose, the most efficient fermentation regime has been considered, namely fed-batch fermentation, and was based on the influences of hydrocarbon volumetric fraction, biomass concentration, and aeration rate on the ergosterol content inside the yeast cells. The model describing the fermentation process has been established by means of the statistical analysis, using a factorial experiment of second order. The considered variables control the ergosterol production in a 94.4% extent, the biomass concentration exhibiting the most important influence.


2021 ◽  
Vol 11 (5) ◽  
pp. 12633-12641

High cell density fed-batch fermentation is the main strategy for recombinant hepatitis B surface antigen (rHBsAg) production. In this study, we employed short-term continuous fermentation to optimize the cell density of recombinant Pichia pastoris (P. pastoris). After reaching the maximum specified broth volume of 5 L in the fed-batch fermentation process, the operation mode was altered into the continuous mode with a dilution rate of 0.009 1/h. We used various values of methanol inflow to examine its impact as a limiting nutrient on cell density. After reaching the steady-state point, the continuous fermentation was stopped. The process's performance was evaluated based on titer, yield, productivity, and ease of process control. According to the results, the optimal methanol inflow in the pilot-scale fermentation process was 39.9 ml/h as the cell density increased from 363 g/l wet cell weight (WCW) in the fed-batch stage to 450 g/l WCW. We could successfully scale up the fermentation process with the biomass concentration of 450 g/l without having any major issues such as excessive heat dissipation or insufficient oxygen supply. This approach is a simple method for enhancing rHBsAg production efficiency in P. pastoris without requiring any new and complex facility.


Sign in / Sign up

Export Citation Format

Share Document