efficient fermentation
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 24)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
pp. 101521
Author(s):  
You Yang ◽  
Ying Chen ◽  
Jin Yanling ◽  
Jing Liu ◽  
Xiang Qin ◽  
...  

Author(s):  
Ting Huang ◽  
Zhen-Ming Lu ◽  
Ming-Ye Peng ◽  
Li-Juan Chai ◽  
Xiao-Juan Zhang ◽  
...  

Mature vinegar culture has usually been used as a type of autochthonous starter for rapidly initiate initiating the next batch of acetic acid fermentation (AAF) and maintaining the batch-to-batch uniformity of AAF in the production of traditional cereal vinegar. However, the vitality and dominance of functional microbes in autochthonous starters remain unclear, which hinders further improvement of fermentation yield and production. Here, based on metagenomic (MG), metatranscriptomic (MT), and 16S rRNA gene sequencings, 11 bacterial operational taxonomic units (OTUs) with significant metabolic activity (MT/MG ratio >1) and dominance (relative abundance >1%) were targeted in the autochthonous vinegar starter, all of which were assigned to 4 species ( Acetobacter pasteurianus , Lactobacillus acetotolerans , L. helveticus , Acetilactobacillus jinshanensis ). Then, we evaluated the successions and interactions of these 11 bacterial OTUs at different AAF stages. Last, a defined starter was constructed with 4 core species isolated from the autochthonous starter ( A. pasteurianus , L. acetotolerans , L. helveticus , Ac. jinshanensis ). The defined starter culture could rapidly initiate the AAF in a sterile or unsterilized environment and similar dynamics of metabolites (ethanol, titratable acidity, acetic acid, lactic acid, and volatile compounds) and environmental indexes (temperature, pH) of fermentation were observed as compared with that of autochthonous starter ( P > 0.05). This work provides a method to construct a defined microbiota from a complex system while preserving its metabolic function. IMPORTANCE Complex microorganisms are beneficial to the flavor formation in natural food fermentation, but they also pose challenges to the mass production of standardized products. It is attractive to construct a defined starter to rapidly initiate fermentation process and significantly improve fermentation yield. This study provides a comprehensive understanding of vital and dominant species in the autochthonous vinegar starter via multi-omics, and designs a defined microbial community for the efficient fermentation of cereal vinegar.


Author(s):  
S. Bilal Jilani ◽  
Rajendra Prasad ◽  
Syed Shams Yazdani

Furfural is a common furan inhibitor formed due to dehydration of pentose sugar like xylose and acts as an inhibitor of microbial metabolism. Overexpression of NADH specific FucO and deletion of NADPH specific YqhD had been a successful strategy in the past in conferring tolerance against furfural in E. coli , which highlight the importance of oxidoreductases in conferring tolerance against furfural. In a screen consisting of various oxidoreductases, dehydrogenases, and reductases, we identified yghA gene as an overexpression target to confer tolerance against furfural. YghA preferably used NADH as a cofactor and had apparent K m value of 0.03 mM against furfural. In presence of 1 g L −1 furfural and 10% xylose (wt/vol), yghA overexpression in an ethanologenic E. coli strain SSK42 resulted in a 5.3-fold increase in ethanol titers as compared to the control strain with an efficiency of ∼97%. YghA also exhibited activity against the lesser toxic inhibitor 5-hydroxymethyl furfural that is formed due to dehydration of hexose sugars and thus is a formidable target for overexpression in ethanologenic strain for fermentation of sugars in biomass hydrolysate. IMPORTANCE Lignocellulosic biomass represents an inexhaustible source of carbon for second-generation biofuels. Thermo-acidic pretreatment of biomass is performed to loosen the lignocellulosic fibers and make the carbon bioavailable for microbial metabolism. The pretreatment process also results in the formation of inhibitors that inhibit microbial metabolism and increase production costs. Furfural is a potent furan inhibitor that increases the toxicity of other inhibitors present in the hydrolysate. Thus it is desirable to engineer furfural tolerance in E. coli for efficient fermentation of hydrolysate sugars.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1628
Author(s):  
Massimo Iorizzo ◽  
Francesco Letizia ◽  
Gianluca Albanese ◽  
Francesca Coppola ◽  
Angelita Gambuti ◽  
...  

Saccharomyces pastorianus, genetic hybrids of Saccharomyces cerevisiae and the Saccharomyces eubayanus, is one of the most widely used lager yeasts in the brewing industry. In recent years, new strategies have been adopted and new lines of research have been outlined to create and expand the pool of lager brewing starters. The vineyard microbiome has received significant attention in the past few years due to many opportunities in terms of biotechnological applications in the winemaking processes. However, the characterization of S. cerevisiae strains isolated from winery environments as an approach to selecting starters for beer production has not been fully investigated, and little is currently available. Four wild cryotolerant S. cerevisiae strains isolated from vineyard environments were evaluated as potential starters for lager beer production at laboratory scale using a model beer wort (MBW). In all tests, the industrial lager brewing S. pastorianus Weihenstephan 34/70 was used as a reference strain. The results obtained, although preliminary, showed some good properties of these strains, such as antioxidant activity, flocculation capacity, efficient fermentation at 15 °C and low diacetyl production. Further studies will be carried out using these S. cerevisiae strains as starters for lager beer production on a pilot scale in order to verify the chemical and sensory characteristics of the beers produced.


2021 ◽  
Vol 11 (17) ◽  
pp. 8127
Author(s):  
Ilavenil Soundharrajan ◽  
Hyung Soo Park ◽  
Sathya Rengasamy ◽  
Ravikumar Sivanesan ◽  
Ki Choon Choi

Ensiling is one of the essential processes to preserve fodder with high nutrients and microbiological quality. The forages before ensiling have a limited number of bacteria associated with the controlled fermentation process. Undesirable microbes can grow in silages when there is not efficient fermentation. Such kinds of microbes might cause pathogenic or toxic compounds that affect animal and human health. Therefore, it is necessary to inoculate potent starter cultures. Lactic acid bacteria’s (LABs) have been considered the most prominent microbial additives used to improve the quality of silage. Currently, LABs have been used in modern and sustainable agriculture systems due to their biological potential. Recently, many scientists have increased their focus on developing nutrient-rich animal feed from forages with LAB. This current review focuses on issues related to forage preservation in the form of silages, how undesirable microbes affect the fermentation process, the critical role of LAB in silage production, and the selection of potent LABs to effectively control unwanted microbial growth and promote those which favor animal growth.


2021 ◽  
Author(s):  
Kristin M Jacob ◽  
Gemma Reguera

The intermittent aeration of the middle ear seeds its mucosa with saliva aerosols and selects for a distinct community of commensals adapted to the otic microenvironment. We gained insights into the selective forces that enrich for specific groups of oral migrants in the middle ear mucosa by investigating the phylogeny and physiology of 19 strains enriched (Streptococcus) or transiently present (Staphylococcus, Neisseria and actinobacterial Micrococcus and Corynebacterium) in otic secretions. Phylogenetic analyses of full length 16S rRNA sequences resolved close relationships between the streptococcal strains and oral commensals as well as between the transient migrants and known nasal and oral species. Physiological functions that facilitate mucosal colonization (swarming motility, surfactant production) and nutrition (mucin and protein degradation) were widespread in all the otic cultivars, as was the ability of most of the isolates to grow both aerobically and anaerobically. However, streptococci stood out for their enhanced biofilm-forming abilities under oxic and anoxic conditions and for their efficient fermentation of mucosal substrates into lactate, a key metabolic intermediate in the otic trophic webs. Additionally, the otic streptococci inhibited the growth of common otopathogens, an antagonistic interaction that could exclude competitors and protect the middle ear mucosa from infections by transient pathobionts. These adaptive traits allow streptococcal migrants to colonize the otic mucosa and grow microcolonies with syntrophic anaerobic partners, establishing trophic webs with other commensals similar to those formed by the oral ancestors in buccal biofilms.


Author(s):  
J. L. Navarrete-Bolaños ◽  
O. Serrato-Joya ◽  
H. Chávez-Mireles ◽  
F. J. Vicente-Magueyal ◽  
H. Jiménez-Islas

Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 887
Author(s):  
Dimitrios Ilanidis ◽  
Stefan Stagge ◽  
Björn Alriksson ◽  
Leif J. Jönsson

Conditioning of lignocellulosic hydrolysates with sulfur oxyanions, such as dithionite, is one of the most potent methods to improve the fermentability by counteracting effects of inhibitory by-products generated during hydrothermal pretreatment under acidic conditions. The effects of pH, treatment temperature, and dithionite dosage were explored in experiments with softwood hydrolysates, sodium dithionite, and Saccharomyces cerevisiae yeast. Treatments with dithionite at pH 5.5 or 8.5 gave similar results with regard to ethanol productivity and yield on initial glucose, and both were always at least ~20% higher than for treatment at pH 2.5. Experiments in the dithionite concentration range 5.0–12.5 mM and the temperature range 23–110 °C indicated that treatment at around 75 °C and using intermediate dithionite dosage was the best option (p ≤ 0.05). The investigation indicates that selection of the optimal temperature and dithionite dosage offers great benefits for the efficient fermentation of hydrolysates from lignin-rich biomass, such as softwood residues.


Author(s):  
Anne Gschaedler ◽  
Laura E. Iñiguez-Muñoz ◽  
Nilda Y. Flores-Flores ◽  
Manuel Kirchmayr ◽  
Melchor Arellano-Plaza

Sign in / Sign up

Export Citation Format

Share Document