oxygen transfer rate
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 38)

H-INDEX

26
(FIVE YEARS 1)

2022 ◽  
Vol 2152 (1) ◽  
pp. 012039
Author(s):  
Cheng Chen

Abstract Membrane aerated biofilm reactor, as a biological wastewater treatment technology, has been nearly mature on a commercial scale. It uses bubble-free aeration to provide oxygen for biological nitrification and wastewater degradation. A novel oxygen-permeable hollow fiber membrane (Zeelung cord) specifically designed for use in a membrane aerated biofilm reactors (MABR). These fibers are organized into bundles, which are wrapped around the reinforcing core to increase strength. This permeable membrane allows oxygen to diffuse into the attached biofilm, which directly leads to the biological oxidation of pollutants in the wastewater. This study aimed to determine the nitrification and oxygen transfer capacity of Zeelung fibers used in the MABR system. The effects of various C/N ratios (in the range of 1.0 to 3.0) on the membrane modules were studied using three laboratory-scale reactors over the course of 165 days. In this test, the average removal efficiency of COD can reach 74% under selected conditions, up to 90%. Meanwhile, the average nitrification rate is 3.9 g/d/m2, the average ammonia removal rate is 90%, and the maximum value can reach 99%. In addition, the oxygen transfer rate of the fiber in the liquid phase was 19.65 g/d/m2. The experiment also indicated that the nitrification rate is directly proportional to the transfer flux of oxygen and is related to the content of dissolved oxygen in the water. The nitrification rate can be controlled by controlling the concentration of dissolved oxygen in water, thus affecting the removal rate of ammonia nitrogen.


Author(s):  
Huanqi He ◽  
Brett M. Wagner ◽  
Avery L. Carlson ◽  
Cheng Yang ◽  
Glen T. Daigger

Abstract The membrane biofilm reactor (MBfR), which is based on the counter diffusion of the electron donors and acceptors into the biofilm, represents a novel technology for wastewater treatment. When process air or oxygen is supplied, the MBfR is known as the membrane aerated biofilm reactor (MABR), which has high oxygen transfer rate and efficiency, promoting microbial growth and activity within the biofilm. Over the past few decades, lab-scale studies have helped researchers and practitioners understand the relevance of influencing factors and biological transformations in MABRs. In recent years, pilot- to full-scale installations are increasing along with process modeling. The resulting accumulated knowledge has greatly improved understanding of the counter-diffusional biological process, with new challenges and opportunities arising. Therefore, it is crucial to provide new insights by conducting this review. This paper reviews wastewater treatment advancements using MABR technology, including design and operational considerations, microbial community ecology, and process modeling. Treatment performance of pilot- to full-scale MABRs for process intensification in existing facilities is assessed. This paper also reviews other emerging applications of MABRs, including sulfur recovery, industrial wastewater, and xenobiotics bioremediation, space-based wastewater treatment, and autotrophic nitrogen removal. In conclusion, commercial applications demonstrate that MABR technology is beneficial for pollutants (COD, N, P, xenobiotics) removal, resource recovery (e.g., sulfur), and N2O mitigation. Further research is needed to increase packing density while retaining efficient external mass transfer, understand the microbial interactions occurring, address existing assumptions to improve process modeling and control, and optimize the operational conditions with site-specific considerations.


2021 ◽  
Vol 25 (Special) ◽  
pp. 3-213-3-223
Author(s):  
Anfal E. Khalaf ◽  
◽  
Mohammed A. Rashid ◽  

Experimental analysis for a fabricated Low-Speed surface aerator that can be used in wastewater and water treatment is presented in this research. The designed impeller configuration was tested to determine its power consumption, standard oxygen transfer rate (SOTR), and standard aeration efficiency (SAE). Impeller oxygen transfer and power consumption in a scaled laboratory tank were measured during aeration phase. The impeller was consisting of 8 inclines flat blades with an angle of 45° from center of the disc, was operated at 3 different immersion depths and 5 different rotational speeds for examining the impact of such factors on impeller efficiency. The results recorded that the best standard aeration efficiency for this configuration is (0.206 Kg. O2/KW.hr) at 120rpm and 7cm depth of the submersion, i.e. submersion depth to impeller diameter (h/D) ratio equals 0.175. Submergence depth increase beyond this limit would result in SAE decrease and definitely result into more power consumption.


Author(s):  
Nina Ihling ◽  
Lara Pauline Munkler ◽  
Christoph Berg ◽  
Britta Reichenbächer ◽  
Johannes Wirth ◽  
...  

Cultivations of mammalian cells are routinely conducted in shake flasks. In contrast to instrumented bioreactors, reliable options for non-invasive, time-resolved monitoring of the culture status in shake flasks are lacking. The Respiration Activity Monitoring Respiration Activity Monitoring System system was used to determine the oxygen transfer rate (OTR) in shake flasks. It was proven that the OTR could be regarded as equal to the oxygen uptake rate as the change of the dissolved oxygen concentration in the liquid phase over time was negligibly small. Thus, monitoring the oxygen transfer rate (OTR) was used to increase the information content from shake flask experiments. The OTR of a Chinese hamster ovary cell line was monitored by applying electrochemical sensors. Glass flasks stoppered with cotton plugs and polycarbonate flasks stoppered with vent-caps were compared in terms of mass transfer characteristics and culture behavior. Similar mass transfer resistances were determined for both sterile closures. The OTR was found to be well reproducible within one experiment (standard deviation <10%). It correlated with changes in cell viability and depletion of carbon sources, thus, giving more profound insights into the cultivation process. Culture behavior in glass and polycarbonate flasks was identical. Monitoring of the OTR was applied to a second culture medium. Media differed in the maximum OTR reached during cultivation and in the time when all carbon sources were depleted. By applying non-invasive, parallelized, time-resolved monitoring of the OTR, the information content and amount of data from shake flask experiments was significantly increased compared to manual sampling and offline analysis. The potential of the technology for early-stage process development was demonstrated.


OENO One ◽  
2021 ◽  
Vol 55 (3) ◽  
pp. 53-65
Author(s):  
Rémy Junqua ◽  
Liming Zeng ◽  
Alexandre Pons

The oak barrel maturation step is nowadays strongly rooted in the production of quality wines. Two main physico‑chemical phenomena contribute to the modification and improvement of wine: the solubilisation of volatile and non-volatile wood compounds concomitant with the dissolution of oxygen from the air into the wine. Indeed, wood is a porous material and gas transfer (especially oxygen transfer, expressed as oxygen transfer rate or OTR) through oak barrels, is an intrinsic parameter which ensures wine oxygen supply during maturation. Due to its oenological impact, it has been actively studied over recent decades using several approaches based on the same principle: the monitoring of oxygen in a model wine solution in the barrel. This project aimed at assaying barrel OTR by using a new tool based on the theoretical knowledge of gas transfer through porous materials. An oxygen concentration gradient was created on each side of a barrel kept in an airtight stainless-steel tank. The concentration of the oxygen in the atmosphere around the barrel was monitored in order to quantify oxygen transfer, thus the avoiding common drawbacks of interactions between dissolved oxygen ingress kinetics and the consumption of oxygen in the liquid phase by wood components. This study reports for the first time, the diffusion coefficient of entire oak barrels (Q. sessilis) to be between 10-10 and 10-9 m²/s, and it contributes to increasing knowledge on the complex phenomena driving oxygen ingress during the maturation of wine in barrels kept in cellar conditions. The results highlight the important role of wood moisture content in oxygen transfer, and provides a simple and reliable parameter to monitor it: the weight of the barrel. Following methodology developed by the authors, the OTR of a new oak barrel was found to be 11.4 mg/L per year. Taking into account the oxygen released through the wood pores, a new barrel will contribute 14.4 mg/L per year of oxygen to the wine, of which 46 % in the first three months of aging.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Judith Loogen ◽  
André Müller ◽  
Arne Balzer ◽  
Sophie Weber ◽  
Kathrin Schmitz ◽  
...  

Abstract Background Growing large crop monocultures and heavily using pesticides enhances the evolution of pesticide-insensitive pests and pathogens. To reduce pesticide use in crop cultivation, the application of priming-active compounds (PrimACs) is a welcome alternative. PrimACs strengthen the plant immune system and could thus help to protect plants with lower amounts of pesticides. PrimACs can be identified, for example, by their capacity to enhance the respiratory activity of parsley cells in culture as determined by the oxygen transfer rate (OTR) using the respiration activity monitoring system (RAMOS) or its miniaturized version, µRAMOS. The latter was designed for with suspensions of bacteria and yeast cells in microtiter plates (MTPs). So far, RAMOS or µRAMOS have not been applied to adult plants or seedlings, which would overcome the limitation of (µ)RAMOS to plant suspension cell cultures. Results In this work, we introduce a modified µRAMOS for analysis of plant seedlings. The novel device allows illuminating the seedlings and records the respiratory activity in each well of a 48-well MTP. To validate the suitability of the setup for identifying novel PrimAC in Arabidopsis thaliana, seedlings were grown in MTP for seven days and treated with the known PrimAC salicylic acid (SA; positive control) and the PrimAC candidate methyl 1-(3,4-dihydroxyphenyl)-2-oxocyclopentane-1-carboxylate (Tyr020). Twenty-eight h after treatment, the seedlings were elicited with flg22, a 22-amino acid peptide of bacterial flagellin. Upon elicitation, the respiratory activity was monitored. The evaluation of the OTR course reveals Tyr020 as a likely PrimAC. The priming-inducing activity of Tyr020 was confirmed using molecular biological analyses in A. thaliana seedlings. Conclusion We disclose the suitability of µRAMOS for identifying PrimACs in plant seedlings. The difference in OTR during a night period between primed and unprimed plants was distinguishable after elicitation with flg22. Thus, it has been shown that the µRAMOS device can be used for a reliable screening for PrimACs in plant seedlings.


Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 226
Author(s):  
Rashal Abed ◽  
Mohamed M. Hussein ◽  
Wael H. Ahmed ◽  
Sherif Abdou

Airlift pumps can be used in the aquaculture industry to provide aeration while concurrently moving water utilizing the dynamics of two-phase flow in the pump riser. The oxygen mass transfer that occurs from the injected compressed air to the water in the aquaculture systems can be experimentally investigated to determine the pump aeration capabilities. The objective of this study is to evaluate the effects of various airflow rates as well as the injection methods on the oxygen transfer rate within a dual injector airlift pump system. Experiments were conducted using an airlift pump connected to a vertical pump riser within a recirculating system. Both two-phase flow patterns and the void fraction measurements were used to evaluate the dissolved oxygen mass transfer mechanism through the airlift pump. A dissolved oxygen (DO) sensor was used to determine the DO levels within the airlift pumping system at different operating conditions required by the pump. Flow visualization imaging and particle image velocimetry (PIV) measurements were performed in order to better understand the effects of the two-phase flow patterns on the aeration performance. It was found that the radial injection method reached the saturation point faster at lower airflow rates, whereas the axial method performed better as the airflow rates were increased. The standard oxygen transfer rate (SOTR) and standard aeration efficiency (SAE) were calculated and were found to strongly depend on the injection method as well as the two-phase flow patterns in the pump riser.


2021 ◽  
Vol 8 (6) ◽  
pp. 82
Author(s):  
Esteban Charria-Girón ◽  
Vanessa Amazo ◽  
Daniela De Angulo ◽  
Eliana Hidalgo ◽  
María Francisca Villegas-Torres ◽  
...  

Microalgae provides an alternative for the valorization of industrial by-products, in which the nutritional content varies substantially and directly affects microalgae system performance. Herein, the heterotrophic cultivation of Chlorella sorokiniana was systematically studied, allowing us to detect a nutritional deficiency other than the carbon source through assessing the oxygen transfer rate for glucose or acetate fermentation. Consequently, a mathematical model of the iron co-limiting effect on heterotrophic microalgae was developed by exploring its ability to regulate the specific growth rate and yield. For instance, higher values of the specific growth rate (0.17 h−1) compared with those reported for the heterotrophic culture of Chlorella were obtained due to iron supplementation. Therefore, anaerobic sludge from an industrial wastewater treatment plant (a baker’s yeast company) was pretreated to obtain an extract as a media supplement for C. sorokiniana. According to the proposed model, the sludge extract allowed us to supplement iron values close to the growth activation concentration (KFe ~12 mg L−1). Therefore, a fed-batch strategy was evaluated on nitrogen-deprived cultures supplemented with the sludge extract to promote biomass formation and fatty acid synthesis. Our findings reveal that nitrogen and iron in sludge extract can supplement heterotrophic cultures of Chlorella and provide an alternative for the valorization of industrial anaerobic sludge.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Amir Hossein Mostafavi ◽  
Seyed Saeid Hosseini

Abstract The modification of membrane oxygenators to minimize protein adsorption onto the surface is often accompanied by the loss of membrane performance. This study aims to explore polyethersulfone (PES) as a new material for membrane oxygenator applications and to assess its potentials. Accordingly, different modification techniques are applied to improve surface properties of PES membranes. To achieve this goal, two separate modification methods including incorporation of TiO2 into the membrane matrix as well as grafting polyethylene glycol (PEG) through oxygen plasma treatment are developed and the effects are examined. The results reveal that protein adsorption to the nanocomposite membrane containing 0.50 wt. % TiO2 and the grafted membrane decreased by 47 and 31%, respectively. In terms of performance, permeability and oxygen transfer rate of all modified membranes exceeded 808 GPU and 2.7 × 10−4 mol·m−2·s−1, respectively. Contact angle analysis revealed signs of hydrophilicity enhancement of membranes after modifications. The findings suggest that upon proper modifications, membranes based on PES could be considered as promising candidates for membrane oxygenator applications and deserves further investigations.


Sign in / Sign up

Export Citation Format

Share Document