scholarly journals Land use dynamics in the Brazilian Cerrado in the period from 2002 to 2013

Author(s):  
Edson Eyi Sano ◽  
Roberto Rosa ◽  
Carlos Alberto de Mattos Scaramuzza ◽  
Marcos Adami ◽  
Edson Luis Bolfe ◽  
...  

Abstract: The objective of this work was to analyze land use dynamics in the Brazilian Cerrado region from 2002 to 2013. This analysis was based on the interpretation of Landsat satellite images carried out by the projects Projeto de Conservação e Utilização Sustentável da Diversidade Biológica Brasileira (Probio) and TerraClass Cerrado 2013, both coordinated by Ministério do Meio Ambiente. In 2002, 38.9% of the Cerrado was covered by some type of anthropic activity. In 2013, this percentage increased to 43.4%. One of the main highlights is the emergence of a new agricultural frontier in the northern region of the study area, known as Matopiba.

2007 ◽  
Vol 26 (4) ◽  
pp. 247-264
Author(s):  
Elna Van Niekerk

Since the initiation in 1960 of the era of satellite remote sensing to detect the different characteristics of the earth, a powerful tool was created to aid researchers. Many land-use studies were undertaken using Landsat MSS, Landsat TM and ETM, as well as SPOT satellite data. The application of these data to the mapping of land use and land cover at smaller scales was constrained by the limited spectral and/or spatial resolution of the data provided by these satellite sensors. In view of the relatively high cost of SPOT data, and uncertainty regarding the future continuation of the Landsat series, alternative data sources need to be investigated. In the absence of published previous research on this issue in South Africa, the purpose of this article is to investigate the value of visual interpretation of ASTER satellite images for the identification and mapping of land-use in an area in South Africa. The study area is situated in Mpumalanga, in the area of Witbank, around the Witbank and Doorndraai dams. This area is characterised by a variety of urban, rural and industrial land uses. Digital image processing of one Landsat 5 TM, one Landsat 7 ETM and one ASTER satellite image was undertaken, including atmospheric correction and georeferencing, natural colour composites, photo infrared colour composites (or false colour satellite images), band ratios, Normalised Difference Indices, as well as the Brightness, Greenness and Wetness Indices. The efficacy with which land use could be identified through the visual interpretation of the processed Landsat 5 TM, Landsat 7 TM and ASTER satellite images was compared. The published 1:50 000 topographical maps of the area were used for the purpose of initial verification. Findings of the visual interpretation process were verified by field visits to the study area. The study found that the ASTER satellite data produced clearer results and therefore have a higher mapping ability and capacity than the Landsat satellite data. Hence, it is anticipated that the use of the full range of the spectral resolution of the ASTER satellite data – which were not available for this study – in statistical pattern recognition and classification methods will enhance the value of the process. Statistical methods are often used to produce visual information which could be applied to prepare land-use change inventories. This should be addressed in future research projects. Should the Landsat programme be terminated, ASTER satellite data might provide the best alternative for a variety of research projects, but if the Landsat project is continued, the ASTER satellite data could be used very effectively in conjunction with the Landsat satellite data. Since it is foreseen that the ASTER satellite data will be available for at least the next 12 to 15 years, it will continue to provide exciting possibilities for the development of programmes to monitor land-use and land-use change. This could then be used by all three levels of government to reach their goals in terms of agricultural planning, town and regional planning and environmental management. These requirements are described in the Integrated Development Programmes (IDP) of the different local governments.


Author(s):  
Élvio Aparecido Motta ◽  
Emmanuélly Maria de Souza Fernandes ◽  
Adriana Cavalieri Sais ◽  
Renata Evangelista de Oliveira ◽  
Renata Sebastiani

Nature is a sacred space, where the tradition and rituals of Afro-Brazilian religions are celebrated, which performance is essential for the preservation of natural resources. Traditional communities that practice Candomblé in Brazil are settled on Nature, so they value and maintain biodiversity. Our objective was to study the spatial evolution of the land use by the traditional African-based community that occupies the Quilombo AnastáciaSite, as well as to understand how their customs – related to the maintenance of health and food -and their rituals help in the conservation of agrobiodiversity. The monitoring of the evolution of land use was carried out using LANDSAT satellite images and images from Google Earth software. According to the timeline (elaborated for 1997-2019), there was substantial increase in vegetation cover. In addition, the planting of native trees, food and medicinal species, as well as the use of agroecological practices (such as implementation of agroforestry systems), promoted diversification in the property. The Quilombo Site area favors the maintenance of the people's health and dietary habits, and the culture of this traditional African-based community guided the occupation of the soil, in order to benefit the conservation of agrobiodiversity.


2020 ◽  
Vol 8 (6) ◽  
pp. 5119-5125

Urban growth of Chennai district is exponential and heading towards extreme urbanisation. Hence this necessitates the study of urban growth in Chennai district. The recent advancement in Remote sensing and GIS has an excellent ability to derive various data from the satellite images obtained .This helps us to map, monitor and picturise various aspects of development with respect to their demands. The basic principle of remote sensing is followed as the methodology. By following the methodology correctly and by proper processing of the data acquired from the satellite images, the exact requirements of information can be obtained. The Change in the urban growth of the Chennai district for three decades from 1989 to 2019 have been found by using remote sensing and GIS techniques. The satellite images of various years are obtained from Landsat satellite from the USGS Earth Explorer .The Land use characteristics of Chennai district of each year can be obtained by preparing the land use land cover map of Chennai district by the use of landsat satellite images. The two software namely ArcGIS and ERDAS Imagine are used to create the Land use land cover map. From the Land use land cover map of Chennai district, the change detection and statistical analysis of three decades are done and these analysis clearly shows that the urban growth of Chennai district is constantly increasing and there is a huge decrease in other natural features such as vegetation, water body and barren land. By performing urban trend analysis the urban growth of Chennai district for the upcoming years are predicted to prove the urban agglomeration in Chennai district.


Sign in / Sign up

Export Citation Format

Share Document