scholarly journals Experimental continuously reinforced concrete pavement parameterization using nondestructive methods

2016 ◽  
Vol 9 (2) ◽  
pp. 263-274
Author(s):  
L. S. Salles ◽  
J. T. Balbo

ABSTRACT Four continuously reinforced concrete pavement (CRCP) sections were built at the University of São Paulo campus in order to analyze the pavement performance in a tropical environment. The sections short length coupled with particular project aspects made the experimental CRCP cracking be different from the traditional CRCP one. After three years of construction, a series of nondestructive testing were performed - Falling Weight Deflectometer (FWD) loadings - to verify and to parameterize the pavement structural condition based on two main properties: the elasticity modulus of concrete (E) and the modulus of subgrade reaction (k). These properties estimation was obtained through the matching process between real and EverFE simulated basins with the load at the slab center, between two consecutive cracks. The backcalculation results show that the lack of anchorage at the sections end decreases the E and k values and that the longitudinal reinforcement percentage provides additional stiffness to the pavement. Additionally, FWD loadings tangential to the cracks allowed the load transfer efficiency (LTE) estimation determination across cracks. The LTE resulted in values above 90 % for all cracks.

2016 ◽  
Vol 43 (1) ◽  
pp. 28-39 ◽  
Author(s):  
Pangil Choi ◽  
Dong-Ho Kim ◽  
Bong-Hak Lee ◽  
Moon C. Won

The objective of this study is to suggest reasonable structural evaluation method of continuously reinforced concrete pavement (CRCP) using falling weight deflectometer (FWD). The effects of transverse crack spacing and temperature conditions were investigated in CRCP sections with various slab thicknesses and pavement ages. A total of 20 CRCP sections were selected throughout Texas and structural responses were evaluated from 2006 to 2013 for 8 testing years. Test results show that transverse crack spacing has little effect on deflection and load transfer efficiency (LTE). The LTE values were maintained at above 90%, regardless of crack spacing, temperature condition or pavement age. Temperature variations had small effects on deflections at cracks and the mid-slab, but almost no effects on LTE. Maximum deflections and back-calculated k-values appear to be better indicators of structural condition of CRCP than LTE. Load transfer efficiency is not the best indicator of structural condition of transverse cracks in CRCP. Deficiencies in slab support are the primary cause of full-depth distresses in Texas, and back-calculated k-values, which combine both a maximum deflection and the shape of deflection bowl from FWD testing, may be a better indicator of the structural condition of CRCP.


Author(s):  
Mustaque Hossain ◽  
John B. Wojakowski

Six jointed reinforced concrete pavement and one jointed plain concrete pavement test sections on US-69 in Miami County, Kansas, constructed in 1979 have been surveyed annually for faulting for the past 9 years. Falling weight deflectometer tests were conducted in 1995 to assess the load transfer efficiency of the joints. The results show that, in general, as the original concrete density increases due to improved consolidation, the rate of increase of the joint fault depth decreases at doweled joints at a given pavement age. The occurrence of joint faulting is much more severe when load transfer devices are not present; this was observed even for the pavement section built on a nonerodible subbase. Improved consolidation sometimes appeared to help improve load transfer, resulting in a lower rate of faulting. Thus, the mandatory density requirement of 98 percent rodded unit weight, which has been in effect since 1980, has undoubtedly led to better joint performance for concrete pavements in Kansas.


2020 ◽  
Vol 5 (1) ◽  
pp. 7
Author(s):  
Pawan Deep ◽  
Mathias B. Andersen ◽  
Nick Thom ◽  
Davide Lo Presti

The jointed rigid pavement is currently evaluated by the Falling weight deflectometer which is rather slow for the testing of the jointed pavements. Continuous nondestructive evaluation of rigid pavements with a rolling wheel deflectometer can be used to measure the load transfer and is investigated. Load transfer is an important indicator of the rigid pavement’s condition and this is the primary factor which is studied. Continuous data from experimental measurements across a joint allows for the determination of not only the load transfer efficiency provided parameters characterizing the pavement is known. A three-dimensional semi-analytical model was implemented for simulating the pavement response near a joint and used for interpretation and verification of the experimental data. Results show that this development is promising for the use of a rolling wheel deflectometer for rapid evaluation of joints.


2015 ◽  
Vol 42 (11) ◽  
pp. 845-853 ◽  
Author(s):  
Piotr Mackiewicz

The suitable load transfer between adjacent concrete slabs in transverse joint is influenced by various parameters. In this paper, the influence of different diameters and spacing of dowel bars on the slab interaction was considered. Calculations were carried out with application of 3D finite element method. Verification of the model was performed with the concrete pavement in Poland. Results of these calculations were compared with falling weight deflectometer studies. Calculations of stress concentration around dowel bars for different conditions and parameters enabled to determine a relationship between load transfer efficiency (LTE) and vertical compressive stresses in the concrete slab. It was found that application of dowels with small diameters can promote damages in the concrete slab because of concentration of vertical compressive stresses under the dowel bar. The found relationship enables to determine stresses in concrete under the dowel according to its diameter and LTE.


2022 ◽  
Vol 319 ◽  
pp. 125991
Author(s):  
Xi Jiang ◽  
Jay Gabrielson ◽  
Baoshan Huang ◽  
Yun Bai ◽  
Pawel Polaczyk ◽  
...  

Author(s):  
Linda M. Pierce ◽  
Joe P. Mahoney

During the late 1980s, the Washington State Department of Transportation (WSDOT), the University of Washington, and the Washington State Transportation Center developed a mechanistic-empirical flexible overlay design procedure. Following development, WSDOT implemented this overlay design procedure and has been evaluating flexible overlay projects for approximately the past 8 years. WSDOT rehabilitates about 100 projects each year; approximately 20 to 30 percent of the total projects are designed using the WSDOT overlay design procedure and the AASHTO overlay design procedure (using DARWin). These two procedures are discussed in general, and two case studies illustrate each of the overlay design procedures. Also included is the backcalculation of layer moduli from falling weight deflectometer data.


Sign in / Sign up

Export Citation Format

Share Document