load transfer efficiency
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 15)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 6 (12) ◽  
pp. 173
Author(s):  
Konstantinos Gkyrtis ◽  
Angeliki Armeni ◽  
Christina Plati ◽  
Andreas Loizos

Maintenance interventions and rehabilitation actions in airfield pavements are time-consuming and adversely affect pavements’ serviceability (i.e., airport closures), with a profound impact on the airport economics. Once a pavement is constructed, a robust asset management prerequisites systematic and accurate knowledge of pavement condition throughout its service life. Evaluating a pavement’s structural capacity in the field involves the integration of multiple Non-Destructive Testing (NDT) systems, with the Falling Weight Deflectometer (FWD) being the most indicative NDT system for pavement evaluation. The purpose of the present study is to develop a methodology for the assessment of airfield concrete pavements. A new and non-trafficked Jointed Plain Concrete Pavement (JPCP), facing early-life cracks shortly after a runway’s expansion activities, was utilized for the investigation. Multiple types of data collected in the field, including deflections, load transfer efficiency at joints and cracks, concrete thickness through coring as well as data retrieved in the laboratory (concrete’s flexural strength), helped to define the pavement’s performance and assess its damage potential. Overall, the integration of such data can provide the related airport authorities the necessary information in order to make a rational asset management and enhance the efficiency of airfield infrastructures. The methodology is applicable for both new and in-service pavements.


Author(s):  
Kaifeng Wang ◽  
Kai Wang ◽  
Yunsheng Zhu ◽  
Yunhan Bao ◽  
Zhou Fang

In this paper, the real joint load transfer efficiency of airport pavement is calculated by combining the results of airport pavement deflection detection and ground-penetrating radar detection. Spring elements are used to simulate the actual load transfer efficiency of joints in ABAQUS. The impact of different asphalt overlays on the stress state of the critical point in the pavement is analyzed by the airport cement concrete pavement model. The result shows that adding a thin stress-absorbing layer with fine-graded and low modulus can effectively disperse the load transferred from the asphalt pavement to the cement pavement and the stress concentration at the joint under the asphalt overlay. Compared with airport pavement without a stress-absorbing layer, the tensile stress and shear stress at the critical point in the airport pavement asphalt overlay decreased by 24.62% and 22.49%, respectively. Therefore, the combination of the high-modulus upper layer and low-modulus lower layer can effectively reduce the tensile stress and shear stress at the critical point. In addition, increases in the thickness of the asphalt overlay can effectively improve the stress state at the critical point. When the thickness of the asphalt overlay changed from 13 cm to 21 cm, the maximum tensile and shear stress decreased by 8.82% and 8.92%, respectively. Finally, based on the analysis of the numerical simulation and field test verification, the optimal airport pavement asphalt overlay scheme is proposed.


Teknik Dergi ◽  
2021 ◽  
Author(s):  
Muhammet ÇELİK ◽  
Mehmet Tevfik SEFEROĞLU ◽  
Muhammet Vefa AKPINAR ◽  
Mohammad Manzoor NASERY ◽  
Ayşegül Güneş SEFEROĞLU

2021 ◽  
Vol 11 (8) ◽  
pp. 3558
Author(s):  
Linh Vu ◽  
Dong Doo Jang ◽  
Yun Suk Kang

Recently, precast slab tracks have been used widely in railway applications, especially in conventional urban railway lines. These types of tracks are rapidly constructed and limit interruptions to train operation. However, the problems of dynamic stability when the trains run on the discontinuous type of tracks must be seriously considered. This paper focuses on analyzing the train-track interaction in two types of tracks under the dynamic load by using the numerical analysis program (APATSI) to evaluate the structural response as well as the running safety to precisely understand the load transfer efficiency of precast slab track systems.


2020 ◽  
Vol 11 (1) ◽  
pp. 120
Author(s):  
Linh Vu ◽  
Yun Suk Kang

In Korea, a precast floating track with anti-vibration isolators was recently developed to reduce the vibration and noise in urban railway stations, without disrupting train operations. This precast floating slab track is a newly developed structure and differs from existing conventional slab tracks. In this study, a Finite Element Method program (MIDAS CIVIL 2019) was used to analyze the load-carrying ability of structures under the train axle loads. After finishing the design, to understand more precisely about load transfer efficiency of this type of track, an assembly test (two load cases) was conducted with three precast panels (with rail 60 K mounted on) and compared with Finite Element Analysis results. The final results satisfied the test standards in Korea, which confirms that the precast floating track has an acceptable safety factor and structural behavior.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Bangyi Liu ◽  
Yang Zhou ◽  
Linhao Gu ◽  
Dalin Wang ◽  
Xiaoming Huang

Dowel bars are arranged between two slabs of jointed plain concrete pavements to transfer load between them. The looseness of these dowel bars leads to the decrease of the load transfer efficiency (LTE). Meanwhile, repeated vehicle load can result in void near the joints. In this paper, the behaviors of concrete pavement under the effect of void size and joint stiffness were studied by using ABAQUS software. The FEA model was calibrated for different element parameters based on mesh convergence analysis and validated by comparison with previous studies. The voids beneath slabs were considered in this study, including the loaded slab and unloaded slab. The different effects of base course modulus on the stress of loaded slab are also analysed. It is concluded that the results show that the void size and joint stiffness affect the stress of the loaded plate. Smaller void size and larger joint stiffness will lead to the maximum stress located at the bottom of the loaded slab, and the void size has little effect on the stress of the loaded slab. Otherwise, the larger void size will cause larger stress. The effect of base modulus on stress is similar.


2020 ◽  
Vol 12 (21) ◽  
pp. 9153
Author(s):  
Andrés César ◽  
Mauricio Pradena

Concrete pavements are characterized by their high durability and low conservation costs. However, concrete production causes large amounts of harmful emissions. In this context, short slab pavements allow us to reduce the slab thickness and the amount of concrete used in their construction. These benefits are only valid if the design assumptions are fulfilled, one of which is the provision of enough Load Transfer Efficiency (LTE) by the aggregate interlock. However, the current design method for short slabs does not relate the LTE with the Crack Width (CW) under the joints. This can jeopardize the sustainable benefits of short slabs. The objective of this study is to propose a method to develop the LTE–CW relationship for the short slabs’ design. The sustainable and accessible approach adopted in the proposal represents a paradigm shift compared to the traditional methods, which are limited to laboratories with sufficient resources to perform real-scale testing. The results show that it is possible to develop the LTE–CW relation in a sustainable manner. Furthermore, the aggregates that fulfill the technical specifications for pavements provide enough LTE when most of the joints are activated. When that happens, short slab pavements reduce environmental and human health impacts by 33% and 26%, respectively.


2020 ◽  
Vol 6 (42) ◽  
pp. eaba7016
Author(s):  
Ningning Song ◽  
Zan Gao ◽  
Xiaodong Li

The nanofiller reinforcing effect in nanocomposites is often far below the theoretically predicted values, largely because of the poor interfacial interaction between the nanofillers and matrix. Here, we report that graphene-wrapped B4C nanowires (B4C-NWs@graphene) empowered exceptional dispersion of nanowires in matrix and superlative nanowire-matrix bonding. The 0.2 volume % B4C-NWs@graphene reinforced epoxy composite exhibited simultaneous enhancements in strength (144.2 MPa), elastic modulus (3.5 GPa), and ductility (15%). Tailoring the composite interfaces with graphene enabled effective utilization of the nanofillers, resulting in two times increase in load transfer efficiency. Molecular dynamics simulations unlocked the shear mixing graphene/nanowire self-assembly mechanism. This low-cost yet effective technique presents unprecedented opportunities for improving nanocomposite interfaces, enabling high load transfer efficiency, and opens up a new path for developing strong and tough nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document