Formic Acid Treatment for Control of Varroa destructor (Mesostigmata: Varroidae) and Safety to Apis mellifera (Hymenoptera: Apidae) Under Southern United States Conditions

2004 ◽  
Vol 97 (5) ◽  
pp. 1509-1512 ◽  
Author(s):  
Patti J. Elzen ◽  
David Westervelt ◽  
Raymond Lucas
Apidologie ◽  
2021 ◽  
Author(s):  
Xenia STEUBE ◽  
Patricia BEINERT ◽  
Wolfgang H. KIRCHNER

AbstractThe ectoparasitic mite Varroa destructor is considered one of the main threats to the western honey bee (Apis mellifera). Efficient pest management is crucial, and the evaporation of formic acid (FA) is an active principle that could be adopted. However, the usage of FA has an extreme variable efficacy depending on several conditions, ambient temperature among them. Cooler conditions, as they usually occur in Central Europe in late summer and autumn, can negatively affect treatment success. Our study aims to evaluate factors that influence the efficacy of different FA treatments. Over a period of 8 years, we investigated the effect of ambient temperature, hive size and dispenser type on the treatment success with 60% and 85% FA and consolidated those factors in a linear regression model. Treatment with 60% FA shows higher variability, and often lowered efficacy, especially in double brood chamber hives. In contrast, 85% FA treatment achieves higher efficacy and lower variability and shows significantly diminished dependence on ambient temperature.


2020 ◽  
Vol 57 (4) ◽  
pp. 1184-1192
Author(s):  
Allan T Showler ◽  
Bailee N Dorsey ◽  
Ryan M Caesar

Abstract Ixodids are blood-feeding ectoparasitic vectors of many disease agents that infect humans, livestock, and wild animals. As ixodid resistance to conventional synthetic acaricides becomes increasingly problematic, natural products are receiving greater attention as possible alternative control tactics. Formic acid, produced by ants, is a commercially available product for fumigating varroa mites, Varroa destructor Anderson & Trueman, infesting honey bee, Apis mellifera L., hives, and it has been reported to repel ixodids. Lone star tick, Amblyomma americanum (L.), larvae and nymphs were used as a model ixodid to investigate deterrent, repellent, and lethal effects of formic acid as a fumigant and contact toxin in vitro in the laboratory. Although formic acid failed to deter or repel A. americanum, it was highly toxic as a fumigant to larvae at a 1% concentration even when exposure was limited to 5 min. Contact by crawling on wet, moist, and dry treated substrates under ventilated conditions causes >90% mortality to larvae in 5% formic acid concentration treatments within 30–120 min, and temporary immersion killed ≈60% of the larvae by 24 h after they were removed from the 5% formic acid treatment solution. Substantial nymphal mortality occurred after 1–1.5 h following exposure to substrate treated with the 10% concentration and immersion killed ≈45% of the nymphs. It appears that formic acid volatiles are more lethal to A. americanum immatures than direct contact with the external integument.


Apidologie ◽  
2017 ◽  
Vol 48 (6) ◽  
pp. 821-832 ◽  
Author(s):  
Aleš Gregorc ◽  
Mohamed Alburaki ◽  
Chris Werle ◽  
Patricia R. Knight ◽  
John Adamczyk

2014 ◽  
Vol 6 (1) ◽  
pp. 27-30 ◽  
Author(s):  
Vimla Goswami ◽  
Poonam Srivastava ◽  
M. S. Khan

Varroa destructor is a dangerous pest directly for beekeeping and indirectly for crops that require insect pollination. The present investigation has been carried out to study the efficacy and persistence of some essential oils and formic acid against Varroa mite in colonies of Apis mellifera Linn. at Pantnagar, Uttarakhand. The results revealed that highest mite mortality (77.54 %) with highest brood development (21.74 % increase) recorded in garlic oil followed by turmeric oil (75.84 %) with 15.39 per cent increases in brood development. The hives treated withT1(tulsi oil), T3 (turmeric oil), T4 (ajwin oil), T5 (cinnamon oil), T5 (clove oil) and T7 (formic acid) also showed good persistence with mite mortality ranging from 66.54 to 77.54 % and brood development -3.12 to 21.74 per cent increase after 3 weeks exposure of the treatments.


Sign in / Sign up

Export Citation Format

Share Document