Using machine learning in insect conservation and biodiversity research

2016 ◽  
Author(s):  
Rebecca Hutchinson
Author(s):  
Brian Stucky ◽  
Laura Brenskelle ◽  
Robert Guralnick

Recent progress in using deep learning techniques to automate the analysis of complex image data is opening up exciting new avenues for research in biodiversity science. However, potential applications of machine learning methods in biodiversity research are often limited by the relative scarcity of data suitable for training machine learning models. Development of high-quality training data sets can be a surprisingly challenging task that can easily consume hundreds of person-hours of time. In this talk, we present the results of our recent work implementing and comparing several different methods for generating annotated, biodiversity-oriented image data for training machine learning models, including collaborative expert scoring, local volunteer image annotators with on-site training, and distributed, remote image annotation via citizen science platforms. We discuss error rates, among-annotator variance, and depth of coverage required to ensure highly reliable image annotations. We also discuss time considerations and efficiency of the various methods. Finally, we present new software, called ImageAnt (currently under development), that supports efficient, highly flexible image annotation workflows. ImageAnt was created primarily in response to the challenges we discovered in our own efforts to generate image-based training data for machine learning models. ImageAnt features a simple user interface and can be used to implement sophisticated, adaptive scripting of image annotation tasks.


2020 ◽  
Vol 43 ◽  
Author(s):  
Myrthe Faber

Abstract Gilead et al. state that abstraction supports mental travel, and that mental travel critically relies on abstraction. I propose an important addition to this theoretical framework, namely that mental travel might also support abstraction. Specifically, I argue that spontaneous mental travel (mind wandering), much like data augmentation in machine learning, provides variability in mental content and context necessary for abstraction.


2020 ◽  
Author(s):  
Mohammed J. Zaki ◽  
Wagner Meira, Jr
Keyword(s):  

2020 ◽  
Author(s):  
Marc Peter Deisenroth ◽  
A. Aldo Faisal ◽  
Cheng Soon Ong
Keyword(s):  

Author(s):  
Lorenza Saitta ◽  
Attilio Giordana ◽  
Antoine Cornuejols

Author(s):  
Shai Shalev-Shwartz ◽  
Shai Ben-David
Keyword(s):  

2006 ◽  
Author(s):  
Christopher Schreiner ◽  
Kari Torkkola ◽  
Mike Gardner ◽  
Keshu Zhang

Sign in / Sign up

Export Citation Format

Share Document