scholarly journals Neural Machine Translation with Adequacy-Oriented Learning

Author(s):  
Xiang Kong ◽  
Zhaopeng Tu ◽  
Shuming Shi ◽  
Eduard Hovy ◽  
Tong Zhang

Although Neural Machine Translation (NMT) models have advanced state-of-the-art performance in machine translation, they face problems like the inadequate translation. We attribute this to that the standard Maximum Likelihood Estimation (MLE) cannot judge the real translation quality due to its several limitations. In this work, we propose an adequacyoriented learning mechanism for NMT by casting translation as a stochastic policy in Reinforcement Learning (RL), where the reward is estimated by explicitly measuring translation adequacy. Benefiting from the sequence-level training of RL strategy and a more accurate reward designed specifically for translation, our model outperforms multiple strong baselines, including (1) standard and coverage-augmented attention models with MLE-based training, and (2) advanced reinforcement and adversarial training strategies with rewards based on both word-level BLEU and character-level CHRF3. Quantitative and qualitative analyses on different language pairs and NMT architectures demonstrate the effectiveness and universality of the proposed approach.

2021 ◽  
pp. 1-36
Author(s):  
Chenze Shao ◽  
Yang Feng ◽  
Jinchao Zhang ◽  
Fandong Meng ◽  
Jie Zhou

Abstract In recent years, Neural Machine Translation (NMT) has achieved notable results in various translation tasks. However, the word-by-word generation manner determined by the autoregressive mechanism leads to high translation latency of the NMT and restricts its low-latency applications. Non-Autoregressive Neural Machine Translation (NAT) removes the autoregressive mechanism and achieves significant decoding speedup through generating target words independently and simultaneously. Nevertheless, NAT still takes the word-level cross-entropy loss as the training objective, which is not optimal because the output of NAT cannot be properly evaluated due to the multimodality problem. In this article, we propose using sequence-level training objectives to train NAT models, which evaluate the NAT outputs as a whole and correlates well with the real translation quality. Firstly, we propose training NAT models to optimize sequence-level evaluation metrics (e.g., BLEU) based on several novel reinforcement algorithms customized for NAT, which outperforms the conventional method by reducing the variance of gradient estimation. Secondly, we introduce a novel training objective for NAT models, which aims to minimize the Bag-of-Ngrams (BoN) difference between the model output and the reference sentence. The BoN training objective is differentiable and can be calculated efficiently without doing any approximations. Finally, we apply a three-stage training strategy to combine these two methods to train the NAT model.We validate our approach on four translation tasks (WMT14 En↔De, WMT16 En↔Ro), which shows that our approach largely outperforms NAT baselines and achieves remarkable performance on all translation tasks. The source code is available at https://github.com/ictnlp/Seq-NAT.


Author(s):  
Rashmini Naranpanawa ◽  
Ravinga Perera ◽  
Thilakshi Fonseka ◽  
Uthayasanker Thayasivam

Neural machine translation (NMT) is a remarkable approach which performs much better than the Statistical machine translation (SMT) models when there is an abundance of parallel corpus. However, vanilla NMT is primarily based upon word-level with a fixed vocabulary. Therefore, low resource morphologically rich languages such as Sinhala are mostly affected by the out of vocabulary (OOV) and Rare word problems. Recent advancements in subword techniques have opened up opportunities for low resource communities by enabling open vocabulary translation. In this paper, we extend our recently published state-of-the-art EN-SI translation system using the transformer and explore standard subword techniques on top of it to identify which subword approach has a greater effect on English Sinhala language pair. Our models demonstrate that subword segmentation strategies along with the state-of-the-art NMT can perform remarkably when translating English sentences into a rich morphology language regardless of a large parallel corpus.


2017 ◽  
Vol 108 (1) ◽  
pp. 13-25 ◽  
Author(s):  
Parnia Bahar ◽  
Tamer Alkhouli ◽  
Jan-Thorsten Peter ◽  
Christopher Jan-Steffen Brix ◽  
Hermann Ney

AbstractTraining neural networks is a non-convex and a high-dimensional optimization problem. In this paper, we provide a comparative study of the most popular stochastic optimization techniques used to train neural networks. We evaluate the methods in terms of convergence speed, translation quality, and training stability. In addition, we investigate combinations that seek to improve optimization in terms of these aspects. We train state-of-the-art attention-based models and apply them to perform neural machine translation. We demonstrate our results on two tasks: WMT 2016 En→Ro and WMT 2015 De→En.


Author(s):  
Hao Xiong ◽  
Zhongjun He ◽  
Hua Wu ◽  
Haifeng Wang

Discourse coherence plays an important role in the translation of one text. However, the previous reported models most focus on improving performance over individual sentence while ignoring cross-sentence links and dependencies, which affects the coherence of the text. In this paper, we propose to use discourse context and reward to refine the translation quality from the discourse perspective. In particular, we generate the translation of individual sentences at first. Next, we deliberate the preliminary produced translations, and train the model to learn the policy that produces discourse coherent text by a reward teacher. Practical results on multiple discourse test datasets indicate that our model significantly improves the translation quality over the state-of-the-art baseline system by +1.23 BLEU score. Moreover, our model generates more discourse coherent text and obtains +2.2 BLEU improvements when evaluated by discourse metrics.


2020 ◽  
Vol 34 (01) ◽  
pp. 198-205
Author(s):  
Chenze Shao ◽  
Jinchao Zhang ◽  
Yang Feng ◽  
Fandong Meng ◽  
Jie Zhou

Non-Autoregressive Neural Machine Translation (NAT) achieves significant decoding speedup through generating target words independently and simultaneously. However, in the context of non-autoregressive translation, the word-level cross-entropy loss cannot model the target-side sequential dependency properly, leading to its weak correlation with the translation quality. As a result, NAT tends to generate influent translations with over-translation and under-translation errors. In this paper, we propose to train NAT to minimize the Bag-of-Ngrams (BoN) difference between the model output and the reference sentence. The bag-of-ngrams training objective is differentiable and can be efficiently calculated, which encourages NAT to capture the target-side sequential dependency and correlates well with the translation quality. We validate our approach on three translation tasks and show that our approach largely outperforms the NAT baseline by about 5.0 BLEU scores on WMT14 En↔De and about 2.5 BLEU scores on WMT16 En↔Ro.


Author(s):  
Zakaria El Maazouzi ◽  
Badr Eddine EL Mohajir ◽  
Mohammed Al Achhab

Achieving high accuracy in automatic translation tasks has been one of the challenging goals for researchers in the area of machine translation since decades. Thus, the eagerness of exploring new possible ways to improve machine translation was always the matter for researchers in the field. Automatic translation as a key application in the natural language processing domain has developed many approaches, namely statistical machine translation and recently neural machine translation that improved largely the translation quality especially for Latin languages. They have even made it possible for the translation of some language pairs to approach human translation quality. In this paper, we present a survey of the state of the art of statistical translation, where we describe the different existing methodologies, and we overview the recent research studies while pointing out the main strengths and limitations of the different approaches.  


Author(s):  
Shuangzhi Wu ◽  
Ming Zhou ◽  
Dongdong Zhang

Neural Machine Translation (NMT) based on the encoder-decoder architecture has recently achieved the state-of-the-art performance. Researchers have proven that extending word level attention to phrase level attention by incorporating source-side phrase structure can enhance the attention model and achieve promising improvement. However, word dependencies that can be crucial to correctly understand a source sentence are not always in a consecutive fashion (i.e. phrase structure), sometimes they can be in long distance. Phrase structures are not the best way to explicitly model long distance dependencies. In this paper we propose a simple but effective method to incorporate source-side long distance dependencies into NMT. Our method based on dependency trees enriches each source state with global dependency structures, which can better capture the inherent syntactic structure of source sentences. Experiments on Chinese-English and English-Japanese translation tasks show that our proposed method outperforms state-of-the-art SMT and NMT baselines.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1589
Author(s):  
Yongkeun Hwang ◽  
Yanghoon Kim ◽  
Kyomin Jung

Neural machine translation (NMT) is one of the text generation tasks which has achieved significant improvement with the rise of deep neural networks. However, language-specific problems such as handling the translation of honorifics received little attention. In this paper, we propose a context-aware NMT to promote translation improvements of Korean honorifics. By exploiting the information such as the relationship between speakers from the surrounding sentences, our proposed model effectively manages the use of honorific expressions. Specifically, we utilize a novel encoder architecture that can represent the contextual information of the given input sentences. Furthermore, a context-aware post-editing (CAPE) technique is adopted to refine a set of inconsistent sentence-level honorific translations. To demonstrate the efficacy of the proposed method, honorific-labeled test data is required. Thus, we also design a heuristic that labels Korean sentences to distinguish between honorific and non-honorific styles. Experimental results show that our proposed method outperforms sentence-level NMT baselines both in overall translation quality and honorific translations.


2021 ◽  
pp. 1-10
Author(s):  
Zhiqiang Yu ◽  
Yuxin Huang ◽  
Junjun Guo

It has been shown that the performance of neural machine translation (NMT) drops starkly in low-resource conditions. Thai-Lao is a typical low-resource language pair of tiny parallel corpus, leading to suboptimal NMT performance on it. However, Thai and Lao have considerable similarities in linguistic morphology and have bilingual lexicon which is relatively easy to obtain. To use this feature, we first build a bilingual similarity lexicon composed of pairs of similar words. Then we propose a novel NMT architecture to leverage the similarity between Thai and Lao. Specifically, besides the prevailing sentence encoder, we introduce an extra similarity lexicon encoder into the conventional encoder-decoder architecture, by which the semantic information carried by the similarity lexicon can be represented. We further provide a simple mechanism in the decoder to balance the information representations delivered from the input sentence and the similarity lexicon. Our approach can fully exploit linguistic similarity carried by the similarity lexicon to improve translation quality. Experimental results demonstrate that our approach achieves significant improvements over the state-of-the-art Transformer baseline system and previous similar works.


Author(s):  
Raj Dabre ◽  
Atsushi Fujita

In encoder-decoder based sequence-to-sequence modeling, the most common practice is to stack a number of recurrent, convolutional, or feed-forward layers in the encoder and decoder. While the addition of each new layer improves the sequence generation quality, this also leads to a significant increase in the number of parameters. In this paper, we propose to share parameters across all layers thereby leading to a recurrently stacked sequence-to-sequence model. We report on an extensive case study on neural machine translation (NMT) using our proposed method, experimenting with a variety of datasets. We empirically show that the translation quality of a model that recurrently stacks a single-layer 6 times, despite its significantly fewer parameters, approaches that of a model that stacks 6 different layers. We also show how our method can benefit from a prevalent way for improving NMT, i.e., extending training data with pseudo-parallel corpora generated by back-translation. We then analyze the effects of recurrently stacked layers by visualizing the attentions of models that use recurrently stacked layers and models that do not. Finally, we explore the limits of parameter sharing where we share even the parameters between the encoder and decoder in addition to recurrent stacking of layers.


Sign in / Sign up

Export Citation Format

Share Document