scholarly journals A Unified Model for Opinion Target Extraction and Target Sentiment Prediction

Author(s):  
Xin Li ◽  
Lidong Bing ◽  
Piji Li ◽  
Wai Lam

Target-based sentiment analysis involves opinion target extraction and target sentiment classification. However, most of the existing works usually studied one of these two sub-tasks alone, which hinders their practical use. This paper aims to solve the complete task of target-based sentiment analysis in an end-to-end fashion, and presents a novel unified model which applies a unified tagging scheme. Our framework involves two stacked recurrent neural networks: The upper one predicts the unified tags to produce the final output results of the primary target-based sentiment analysis; The lower one performs an auxiliary target boundary prediction aiming at guiding the upper network to improve the performance of the primary task. To explore the inter-task dependency, we propose to explicitly model the constrained transitions from target boundaries to target sentiment polarities. We also propose to maintain the sentiment consistency within an opinion target via a gate mechanism which models the relation between the features for the current word and the previous word. We conduct extensive experiments on three benchmark datasets and our framework achieves consistently superior results.

2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Sharat Sachin ◽  
Abha Tripathi ◽  
Navya Mahajan ◽  
Shivani Aggarwal ◽  
Preeti Nagrath

Author(s):  
Yan Zhou ◽  
Longtao Huang ◽  
Tao Guo ◽  
Jizhong Han ◽  
Songlin Hu

Target-Based Sentiment Analysis aims at extracting opinion targets and classifying the sentiment polarities expressed on each target. Recently, token based sequence tagging methods have been successfully applied to jointly solve the two tasks, which aims to predict a tag for each token. Since they do not treat a target containing several words as a whole, it might be difficult to make use of the global information to identify that opinion target, leading to incorrect extraction. Independently predicting the sentiment for each token may also lead to sentiment inconsistency for different words in an opinion target. In this paper, inspired by span-based methods in NLP, we propose a simple and effective joint model to conduct extraction and classification at span level rather than token level. Our model first emulates spans with one or more tokens and learns their representation based on the tokens inside. And then, a span-aware attention mechanism is designed to compute the sentiment information towards each span. Extensive experiments on three benchmark datasets show that our model consistently outperforms the state-of-the-art methods.


Author(s):  
S. Kavibharathi ◽  
S. Lakshmi Priyankaa ◽  
M.S. Kaviya ◽  
Dr.S. Vasanthi

The World Wide Web such as social networking sites and blog comments forum has huge user comments emotion data from different social events and product brand and arguments in the form of political views. Generate a heap. Reflects the user's mood on the network, the reader, has a huge impact on product suppliers and politicians. The challenge for the credibility of the analysis is the lack of sufficient tag data in the Natural Language Processing (NLP) field. Positive and negative classify content based on user feedback, live chat, whether the user is used as the base for a wide range of tasks related to the text content of a meaningful assessment. Data collection, and function number for all variants. A recurrent neural network is very good text classification. Analyzing unstructured form from social media data, reasonable structure, and analyzes attach great importance to note for this emotion. Emotional rewiring can use natural language processing sentiment analysis to predict. In the method by the Recurrent Neural Networks (RNNs) of the proposed prediction chat live chat into sentiment analysis. Sentiment analysis and in-depth learning technology have been integrated into the solution to this problem, with their deep learning model automatic learning function is active. Using a Recurrent Neural Networks (RNNs) reputation analysis to solve various problems and language problems of text analysis and visualization product retrospective sentiment classifier cross-depth analysis of the learning model implementation.


Sign in / Sign up

Export Citation Format

Share Document