scholarly journals Weighted Channel Dropout for Regularization of Deep Convolutional Neural Network

Author(s):  
Saihui Hou ◽  
Zilei Wang

In this work, we propose a novel method named Weighted Channel Dropout (WCD) for the regularization of deep Convolutional Neural Network (CNN). Different from Dropout which randomly selects the neurons to set to zero in the fully-connected layers, WCD operates on the channels in the stack of convolutional layers. Specifically, WCD consists of two steps, i.e., Rating Channels and Selecting Channels, and three modules, i.e., Global Average Pooling, Weighted Random Selection and Random Number Generator. It filters the channels according to their activation status and can be plugged into any two consecutive layers, which unifies the original Dropout and Channel-Wise Dropout. WCD is totally parameter-free and deployed only in training phase with very slight computation cost. The network in test phase remains unchanged and thus the inference cost is not added at all. Besides, when combining with the existing networks, it requires no re-pretraining on ImageNet and thus is well-suited for the application on small datasets. Finally, WCD with VGGNet-16, ResNet-101, Inception-V3 are experimentally evaluated on multiple datasets. The extensive results demonstrate that WCD can bring consistent improvements over the baselines.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Lei Si ◽  
Xiangxiang Xiong ◽  
Zhongbin Wang ◽  
Chao Tan

Accurate identification of the distribution of coal seam is a prerequisite for realizing intelligent mining of shearer. This paper presents a novel method for identifying coal and rock based on a deep convolutional neural network (CNN). Three regularization methods are introduced in this paper to solve the overfitting problem of CNN and speed up the convergence: dropout, weight regularization, and batch normalization. Then the coal-rock image information is enriched by means of data augmentation, which significantly improves the performance. The shearer cutting coal-rock experiment system is designed to collect more real coal-rock images, and some experiments are provided. The experiment results indicate that the network we designed has better performance in identifying the coal-rock images.


2018 ◽  
Vol 173 ◽  
pp. 03080
Author(s):  
Zhi Zhang ◽  
Liang Guo ◽  
Xianguang Dong ◽  
Yanjie Dai ◽  
Yan Du

As diversity of electro-data anomaly, the methods based on artificial feature are becoming more difficult to detect anomalies among a great deal of electro-data. Hence, this paper proposes a novel method which is based on deep convolutional neural network (DCNN) to detect anomaly electro-data. This method models the sample data with time information and electrical parameters, and labels them as normal or abnormal automatically. Further, the paper improves the designing DCNN to extract precise features from large scale of electro-data to get high accuracy. The results of the case analysis show that our method can detect anomaly electro-data more exact and stable than the traditional methods. The abnormal precision rate and abnormal recall rate of our approach reach 92.7% and 91.3% respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xianglong Qi ◽  
Jie Zhong ◽  
Shengjia Cui

In this paper, we propose a novel method, an adaptive localizing region-based level set using convolutional neural network, for improving performance of maxillary sinus segmentation. The healthy sinus without lesion inside is easy for conventional algorithms. However, in practice, most of the cases are filled with lesions of great heterogeneity which lead to lower accuracy. Therefore, we provide a strategy to avoid active contour from being trapped into a nontarget area. First, features of lesion and maxillary sinus are studied using a convolutional neural network (CNN) with two convolutional and three fully connected layers in architecture. In addition, outputs of CNN are devised to evaluate possibilities of zero level set location close to lesion or not. Finally, the method estimates stable points on the contour by an interactive process. If it locates in the lesion, the point needs to be paid a certain speed compensation based on the value of possibility via CNN, assisting itself to escape from the local minima. If not, the point preserves current status till convergence. Capabilities of our method have been demonstrated on a dataset of 200 CT images with possible lesions. To illustrate the strength of our method, we evaluated it against state-of-the-art methods, FLS and CRF-FCN. For all cases, our method, as assessed by Dice similarity coefficients, performed significantly better compared with currently available methods and obtained a significant Dice improvement, 0.25 than FLS and 0.12 than CRF-FCN, respectively, on an average.


2021 ◽  
pp. 1-10
Author(s):  
Wei Liu ◽  
Wenlong Feng ◽  
Mengxing Huang ◽  
Huirui Han ◽  
Guilai Han ◽  
...  

The Hainan Island has a generally high biological diversity with a wide variety of plant species, some of which are listed as endemic to the island. It is time-consuming and difficult, even for the botanist experts to determine the name of species based on observations. Automated plant identification enables experts to process significantly greater numbers of plants with higher efficiencies in shorter periods of time. However, plant recognition is a kind of fine-grained visual recognition problem, which is relatively harder than conventional image recognition. In this paper, we employ a Deep Convolutional Neural Network (DCNN) trained on the ImageNet database, which contains millions of images, and then transfer the learning information for automated plant identification based on flower and fruit images. First, we modify the last three layers of the pre-trained network in order to adapt ResNet-50 model to our classification task, and replace the fully connected layer in the original pre-trained network with another fully connected layers, in which the output size represents the class of plants. Secondly, we use transfer experience and fine-tuned pre-trained DCNN for experiments using flower and fruit images. Finally, we evaluate the proposed network on two available botanical datasets: the Oxford flowers dataset with 102 classes and the HNPlant flowers and fruits dataset with 20 classes, and determine the optimal values of the associated hyperparameters to improve the overall performance. Experiment results demonstrate that the highest classification accuracies exhibited by the proposed model on the Oxford-102 and HNPlant-20 datasets are 92.4% and 95.0%, respectively, thus establishing their effectiveness and superiority.


2020 ◽  
Vol 2020 (4) ◽  
pp. 4-14
Author(s):  
Vladimir Budak ◽  
Ekaterina Ilyina

The article proposes the classification of lenses with different symmetrical beam angles and offers a scale as a spot-light’s palette. A collection of spotlight’s images was created and classified according to the proposed scale. The analysis of 788 pcs of existing lenses and reflectors with different LEDs and COBs carried out, and the dependence of the axial light intensity from beam angle was obtained. A transfer training of new deep convolutional neural network (CNN) based on the pre-trained GoogleNet was performed using this collection. GradCAM analysis showed that the trained network correctly identifies the features of objects. This work allows us to classify arbitrary spotlights with an accuracy of about 80 %. Thus, light designer can determine the class of spotlight and corresponding type of lens with its technical parameters using this new model based on CCN.


2019 ◽  
Vol 24 (3) ◽  
pp. 220-228
Author(s):  
Gusti Alfahmi Anwar ◽  
Desti Riminarsih

Panthera merupakan genus dari keluarga kucing yang memiliki empat spesies popular yaitu, harimau, jaguar, macan tutul, singa. Singa memiliki warna keemasan dan tidak memilki motif, harimau memiliki motif loreng dengan garis-garis panjang, jaguar memiliki tubuh yang lebih besar dari pada macan tutul serta memiliki motif tutul yang lebih lebar, sedangkan macan tutul memiliki tubuh yang sedikit lebih ramping dari pada jaguar dan memiliki tutul yang tidak terlalu lebar. Pada penelitian ini dilakukan klasifikasi genus panther yaitu harimau, jaguar, macan tutul, dan singa menggunakan metode Convolutional Neural Network. Model Convolutional Neural Network yang digunakan memiliki 1 input layer, 5 convolution layer, dan 2 fully connected layer. Dataset yang digunakan berupa citra harimau, jaguar, macan tutul, dan singa. Data training terdiri dari 3840 citra, data validasi sebanyak 960 citra, dan data testing sebanyak 800 citra. Hasil akurasi dari pelatihan model untuk training yaitu 92,31% dan validasi yaitu 81,88%, pengujian model menggunakan dataset testing mendapatan hasil 68%. Hasil akurasi prediksi didapatkan dari nilai F1-Score pada pengujian didapatkan sebesar 78% untuk harimau, 70% untuk jaguar, 37% untuk macan tutul, 74% untuk singa. Macan tutul mendapatkan akurasi terendah dibandingkan 3 hewan lainnya tetapi lebih baik dibandingkan hasil penelitian sebelumnya.


Sign in / Sign up

Export Citation Format

Share Document