scholarly journals Adapting Stable Matchings to Evolving Preferences

2020 ◽  
Vol 34 (02) ◽  
pp. 1830-1837 ◽  
Author(s):  
Robert Bredereck ◽  
Jiehua Chen ◽  
Dušan Knop ◽  
Junjie Luo ◽  
Rolf Niedermeier

Adaptivity to changing environments and constraints is key to success in modern society. We address this by proposing “incrementalized versions” of Stable Marriage and Stable Roommates. That is, we try to answer the following question: for both problems, what is the computational cost of adapting an existing stable matching after some of the preferences of the agents have changed. While doing so, we also model the constraint that the new stable matching shall be not too different from the old one. After formalizing these incremental versions, we provide a fairly comprehensive picture of the computational complexity landscape of Incremental Stable Marriage and Incremental Stable Roommates. To this end, we exploit the parameters “degree of change” both in the input (difference between old and new preference profile) and in the output (difference between old and new stable matching). We obtain both hardness and tractability results, in particular showing a fixed-parameter tractability result with respect to the parameter “distance between old and new stable matching”.

2013 ◽  
Vol 46 (7) ◽  
pp. 839-860 ◽  
Author(s):  
Panos Giannopoulos ◽  
Christian Knauer ◽  
Günter Rote ◽  
Daniel Werner

Author(s):  
Feng Shi ◽  
Jie You ◽  
Zhen Zhang ◽  
Jingyi Liu ◽  
Jianxin Wang

Networks ◽  
2005 ◽  
Vol 46 (3) ◽  
pp. 124-135 ◽  
Author(s):  
Jiong Guo ◽  
Rolf Niedermeier

Algorithmica ◽  
2012 ◽  
Vol 68 (3) ◽  
pp. 739-757 ◽  
Author(s):  
Robert Crowston ◽  
Gregory Gutin ◽  
Mark Jones ◽  
Venkatesh Raman ◽  
Saket Saurabh ◽  
...  

Author(s):  
Matías Fuentes ◽  
Fernando Tohmé

Abstract In this paper we analyze the existence of stable matchings in a two-sided large market in which workers are assigned to firms. The market has a continuum of workers while the set of firms is countably infinite. We show that, under certain reasonable assumptions on the preference correspondences, stable matchings not only exist but are also Pareto optimal.


2018 ◽  
Vol 108 (11) ◽  
pp. 3154-3169 ◽  
Author(s):  
Thành Nguyen ◽  
Rakesh Vohra

The National Resident Matching program seeks a stable matching of medical students to teaching hospitals. With couples, stable matchings need not exist. Nevertheless, for any student preferences, we show that each instance of a matching problem has a “nearby” instance with a stable matching. The nearby instance is obtained by perturbing the capacities of the hospitals. In this perturbation, aggregate capacity is never reduced and can increase by at most four. The capacity of each hospital never changes by more than two. (JEL C78, D47, I11, J41, J44)


2017 ◽  
Vol 27 (04) ◽  
pp. 277-296 ◽  
Author(s):  
Vincent Froese ◽  
Iyad Kanj ◽  
André Nichterlein ◽  
Rolf Niedermeier

We study the General Position Subset Selection problem: Given a set of points in the plane, find a maximum-cardinality subset of points in general position. We prove that General Position Subset Selection is NP-hard, APX-hard, and present several fixed-parameter tractability results for the problem as well as a subexponential running time lower bound based on the Exponential Time Hypothesis.


Sign in / Sign up

Export Citation Format

Share Document