Project Halo Update—Progress Toward Digital Aristotle

AI Magazine ◽  
2010 ◽  
Vol 31 (3) ◽  
pp. 33 ◽  
Author(s):  
David Gunning ◽  
Vinay K. Chaudhri ◽  
Peter E. Clark ◽  
Ken Barker ◽  
Shaw-Yi Chaw ◽  
...  

In the winter, 2004 issue of AI Magazine, we reported Vulcan Inc.'s first step toward creating a question-answering system called "Digital Aristotle." The goal of that first step was to assess the state of the art in applied Knowledge Representation and Reasoning (KRR) by asking AI experts to represent 70 pages from the advanced placement (AP) chemistry syllabus and to deliver knowledge-based systems capable of answering questions from that syllabus. This paper reports the next step toward realizing a Digital Aristotle: we present the design and evaluation results for a system called AURA, which enables domain experts in physics, chemistry, and biology to author a knowledge base and that then allows a different set of users to ask novel questions against that knowledge base. These results represent a substantial advance over what we reported in 2004, both in the breadth of covered subjects and in the provision of sophisticated technologies in knowledge representation and reasoning, natural language processing, and question answering to domain experts and novice users.

2021 ◽  
Author(s):  
Marciane Mueller ◽  
Rejane Frozza ◽  
Liane Mählmann Kipper ◽  
Ana Carolina Kessler

BACKGROUND This article presents the modeling and development of a Knowledge Based System, supported by the use of a virtual conversational agent called Dóris. Using natural language processing resources, Dóris collects the clinical data of patients in care in the context of urgency and hospital emergency. OBJECTIVE The main objective is to validate the use of virtual conversational agents to properly and accurately collect the data necessary to perform the evaluation flowcharts used to classify the degree of urgency of patients and determine the priority for medical care. METHODS The agent's knowledge base was modeled using the rules provided for in the evaluation flowcharts comprised by the Manchester Triage System. It also allows the establishment of a simple, objective and complete communication, through dialogues to assess signs and symptoms that obey the criteria established by a standardized, validated and internationally recognized system. RESULTS Thus, in addition to verifying the applicability of Artificial Intelligence techniques in a complex domain of health care, a tool is presented that helps not only in the perspective of improving organizational processes, but also in improving human relationships, bringing professionals and patients closer. The system's knowledge base was modeled on the IBM Watson platform. CONCLUSIONS The results obtained from simulations carried out by the human specialist allowed us to verify that a knowledge-based system supported by a virtual conversational agent is feasible for the domain of risk classification and priority determination of medical care for patients in the context of emergency care and hospital emergency.


Author(s):  
Saravanakumar Kandasamy ◽  
Aswani Kumar Cherukuri

Semantic similarity quantification between concepts is one of the inevitable parts in domains like Natural Language Processing, Information Retrieval, Question Answering, etc. to understand the text and their relationships better. Last few decades, many measures have been proposed by incorporating various corpus-based and knowledge-based resources. WordNet and Wikipedia are two of the Knowledge-based resources. The contribution of WordNet in the above said domain is enormous due to its richness in defining a word and all of its relationship with others. In this paper, we proposed an approach to quantify the similarity between concepts that exploits the synsets and the gloss definitions of different concepts using WordNet. Our method considers the gloss definitions, contextual words that are helping in defining a word, synsets of contextual word and the confidence of occurrence of a word in other word’s definition for calculating the similarity. The evaluation based on different gold standard benchmark datasets shows the efficiency of our system in comparison with other existing taxonomical and definitional measures.


Author(s):  
Sanda Harabagiu ◽  
Dan Moldovan

Textual Question Answering (QA) identifies the answer to a question in large collections of on-line documents. By providing a small set of exact answers to questions, QA takes a step closer to information retrieval rather than document retrieval. A QA system comprises three modules: a question-processing module, a document-processing module, and an answer extraction and formulation module. Questions may be asked about any topic, in contrast with Information Extraction (IE), which identifies textual information relevant only to a predefined set of events and entities. The natural language processing (NLP) techniques used in open-domain QA systems may range from simple lexical and semantic disambiguation of question stems to complex processing that combines syntactic and semantic features of the questions with pragmatic information derived from the context of candidate answers. This article reviews current research in integrating knowledge-based NLP methods with shallow processing techniques for QA.


1999 ◽  
Vol 10 ◽  
pp. 399-434 ◽  
Author(s):  
A. Borgida

This paper offers an approach to extensible knowledge representation and reasoning for a family of formalisms known as Description Logics. The approach is based on the notion of adding new concept constructors, and includes a heuristic methodology for specifying the desired extensions, as well as a modularized software architecture that supports implementing extensions. The architecture detailed here falls in the normalize-compared paradigm, and supports both intentional reasoning (subsumption) involving concepts, and extensional reasoning involving individuals after incremental updates to the knowledge base. The resulting approach can be used to extend the reasoner with specialized notions that are motivated by specific problems or application areas, such as reasoning about dates, plans, etc. In addition, it provides an opportunity to implement constructors that are not currently yet sufficiently well understood theoretically, but are needed in practice. Also, for constructors that are provably hard to reason with (e.g., ones whose presence would lead to undecidability), it allows the implementation of incomplete reasoners where the incompleteness is tailored to be acceptable for the application at hand.


2020 ◽  
Vol 12 (3) ◽  
pp. 45
Author(s):  
Wenqing Wu ◽  
Zhenfang Zhu ◽  
Qiang Lu ◽  
Dianyuan Zhang ◽  
Qiangqiang Guo

Knowledge base question answering (KBQA) aims to analyze the semantics of natural language questions and return accurate answers from the knowledge base (KB). More and more studies have applied knowledge bases to question answering systems, and when using a KB to answer a natural language question, there are some words that imply the tense (e.g., original and previous) and play a limiting role in questions. However, most existing methods for KBQA cannot model a question with implicit temporal constraints. In this work, we propose a model based on a bidirectional attentive memory network, which obtains the temporal information in the question through attention mechanisms and external knowledge. Specifically, we encode the external knowledge as vectors, and use additive attention between the question and external knowledge to obtain the temporal information, then further enhance the question vector to increase the accuracy. On the WebQuestions benchmark, our method not only performs better with the overall data, but also has excellent performance regarding questions with implicit temporal constraints, which are separate from the overall data. As we use attention mechanisms, our method also offers better interpretability.


Author(s):  
Yousheng Tian ◽  
Yingxu Wang ◽  
Marina L. Gavrilova ◽  
Guenther Ruhe

It is recognized that the generic form of machine learning is a knowledge acquisition and manipulation process mimicking the brain. Therefore, knowledge representation as a dynamic concept network is centric in the design and implementation of the intelligent knowledge base of a Cognitive Learning Engine (CLE). This paper presents a Formal Knowledge Representation System (FKRS) for autonomous concept formation and manipulation based on concept algebra. The Object-Attribute-Relation (OAR) model for knowledge representation is adopted in the design of FKRS. The conceptual model, architectural model, and behavioral models of the FKRS system is formally designed and specified in Real-Time Process Algebra (RTPA). The FKRS system is implemented in Java as a core component towards the development of the CLE and other knowledge-based systems in cognitive computing and computational intelligence.


Author(s):  
Ram Kumar ◽  
Shailesh Jaloree ◽  
R. S. Thakur

Knowledge-based systems have become widespread in modern years. Knowledge-base developers need to be able to share and reuse knowledge bases that they build. As a result, interoperability among different knowledge-representation systems is essential. Domain ontology seeks to reduce conceptual and terminological confusion among users who need to share various kind of information. This paper shows how these structures make it possible to bridge the gap between standard objects and Knowledge-based Systems.


Author(s):  
Yousheng Tian ◽  
Yingxu Wang ◽  
Marina L. Gavrilova ◽  
Guenther Ruhe

It is recognized that the generic form of machine learning is a knowledge acquisition and manipulation process mimicking the brain. Therefore, knowledge representation as a dynamic concept network is centric in the design and implementation of the intelligent knowledge base of a Cognitive Learning Engine (CLE). This paper presents a Formal Knowledge Representation System (FKRS) for autonomous concept formation and manipulation based on concept algebra. The Object-Attribute-Relation (OAR) model for knowledge representation is adopted in the design of FKRS. The conceptual model, architectural model, and behavioral models of the FKRS system is formally designed and specified in Real-Time Process Algebra (RTPA). The FKRS system is implemented in Java as a core component towards the development of the CLE and other knowledge-based systems in cognitive computing and computational intelligence.


2017 ◽  
Vol 11 (03) ◽  
pp. 345-371
Author(s):  
Avani Chandurkar ◽  
Ajay Bansal

With the inception of the World Wide Web, the amount of data present on the Internet is tremendous. This makes the task of navigating through this enormous amount of data quite difficult for the user. As users struggle to navigate through this wealth of information, the need for the development of an automated system that can extract the required information becomes urgent. This paper presents a Question Answering system to ease the process of information retrieval. Question Answering systems have been around for quite some time and are a sub-field of information retrieval and natural language processing. The task of any Question Answering system is to seek an answer to a free form factual question. The difficulty of pinpointing and verifying the precise answer makes question answering more challenging than simple information retrieval done by search engines. The research objective of this paper is to develop a novel approach to Question Answering based on a composition of conventional approaches of Information Retrieval (IR) and Natural Language processing (NLP). The focus is on using a structured and annotated knowledge base instead of an unstructured one. The knowledge base used here is DBpedia and the final system is evaluated on the Text REtrieval Conference (TREC) 2004 questions dataset.


Sign in / Sign up

Export Citation Format

Share Document