scholarly journals Constrained Multiagent Markov Decision Processes: a Taxonomy of Problems and Algorithms

2021 ◽  
Vol 70 ◽  
pp. 955-1001
Author(s):  
Frits De Nijs ◽  
Erwin Walraven ◽  
Mathijs De Weerdt ◽  
Matthijs Spaan

In domains such as electric vehicle charging, smart distribution grids and autonomous warehouses, multiple agents share the same resources. When planning the use of these resources, agents need to deal with the uncertainty in these domains. Although several models and algorithms for such constrained multiagent planning problems under uncertainty have been proposed in the literature, it remains unclear when which algorithm can be applied. In this survey we conceptualize these domains and establish a generic problem class based on Markov decision processes. We identify and compare the conditions under which algorithms from the planning literature for problems in this class can be applied: whether constraints are soft or hard, whether agents are continuously connected, whether the domain is fully observable, whether a constraint is momentarily (instantaneous) or on a budget, and whether the constraint is on a single resource or on multiple. Further we discuss the advantages and disadvantages of these algorithms. We conclude by identifying open problems that are directly related to the conceptualized domains, as well as in adjacent research areas.

Author(s):  
YANG XIANG ◽  
FRANK HANSHAR

We investigate a class of multiagent planning problems termed multiagent expedition, where agents move around an open, unknown, partially observable, stochastic, and physical environment, in pursuit of multiple and alternative goals of different utility. Optimal planning in multiagent expedition is highly intractable. We introduce the notion of conditional optimality, decompose the task into a set of semi-independent optimization subtasks, and apply a decision-theoretic multiagent graphical model to solve each subtask optimally. A set of techniques are proposed to enhance modeling so that the resultant graphical model can be practically evaluated. Effectiveness of the framework and its scalability are demonstrated through experiments. Multiagent expedition can be characterized as decentralized partially observable Markov decision processes (Dec-POMDPs). Hence, this work contributes towards practical planning in Dec-POMDPs.


1983 ◽  
Vol 20 (04) ◽  
pp. 835-842
Author(s):  
David Assaf

The paper presents sufficient conditions for certain functions to be convex. Functions of this type often appear in Markov decision processes, where their maximum is the solution of the problem. Since a convex function takes its maximum at an extreme point, the conditions may greatly simplify a problem. In some cases a full solution may be obtained after the reduction is made. Some illustrative examples are discussed.


Sign in / Sign up

Export Citation Format

Share Document