scholarly journals Perseus: Randomized Point-based Value Iteration for POMDPs

2005 ◽  
Vol 24 ◽  
pp. 195-220 ◽  
Author(s):  
M. T.J. Spaan ◽  
N. Vlassis

Partially observable Markov decision processes (POMDPs) form an attractive and principled framework for agent planning under uncertainty. Point-based approximate techniques for POMDPs compute a policy based on a finite set of points collected in advance from the agent's belief space. We present a randomized point-based value iteration algorithm called Perseus. The algorithm performs approximate value backup stages, ensuring that in each backup stage the value of each point in the belief set is improved; the key observation is that a single backup may improve the value of many belief points. Contrary to other point-based methods, Perseus backs up only a (randomly selected) subset of points in the belief set, sufficient for improving the value of each belief point in the set. We show how the same idea can be extended to dealing with continuous action spaces. Experimental results show the potential of Perseus in large scale POMDP problems.

Author(s):  
YAODONG NI ◽  
ZHI-QIANG LIU

Partially observable Markov decision processes (POMDPs) are powerful for planning under uncertainty. However, it is usually impractical to employ a POMDP with exact parameters to model the real-life situation precisely, due to various reasons such as limited data for learning the model, inability of exact POMDPs to model dynamic situations, etc. In this paper, assuming that the parameters of POMDPs are imprecise but bounded, we formulate the framework of bounded-parameter partially observable Markov decision processes (BPOMDPs). A modified value iteration is proposed as a basic strategy for tackling parameter imprecision in BPOMDPs. In addition, we design the UL-based value iteration algorithm, in which each value backup is based on two sets of vectors called U-set and L-set. We propose four strategies for computing U-set and L-set. We analyze theoretically the computational complexity and the reward loss of the algorithm. The effectiveness and robustness of the algorithm are shown empirically.


Author(s):  
Karel Horák ◽  
Branislav Bošanský ◽  
Krishnendu Chatterjee

Partially observable Markov decision processes (POMDPs) are the standard models for planning under uncertainty with both finite and infinite horizon. Besides the well-known discounted-sum objective, indefinite-horizon objective (aka Goal-POMDPs) is another classical objective for POMDPs. In this case, given a set of target states and a positive cost for each transition, the optimization objective is to minimize the expected total cost until a target state is reached. In the literature, RTDP-Bel or heuristic search value iteration (HSVI) have been used for solving Goal-POMDPs. Neither of these algorithms has theoretical convergence guarantees, and HSVI may even fail to terminate its trials. We give the following contributions: (1) We discuss the challenges introduced in Goal-POMDPs and illustrate how they prevent the original HSVI from converging. (2) We present a novel algorithm inspired by HSVI, termed Goal-HSVI, and show that our algorithm has convergence guarantees. (3) We show that Goal-HSVI outperforms RTDP-Bel on a set of well-known examples.


Author(s):  
Mahsa Ghasemi ◽  
Ufuk Topcu

In conventional partially observable Markov decision processes, the observations that the agent receives originate from fixed known distributions. However, in a variety of real-world scenarios, the agent has an active role in its perception by selecting which observations to receive. We avoid combinatorial expansion of the action space from integration of planning and perception decisions, through a greedy strategy for observation selection that minimizes an information-theoretic measure of the state uncertainty. We develop a novel point-based value iteration algorithm that incorporates this greedy strategy to pick perception actions for each sampled belief point in each iteration. As a result, not only the solver requires less belief points to approximate the reachable subspace of the belief simplex, but it also requires less computation per iteration. Further, we prove that the proposed algorithm achieves a near-optimal guarantee on value function with respect to an optimal perception strategy, and demonstrate its performance empirically.


2001 ◽  
Vol 14 ◽  
pp. 29-51 ◽  
Author(s):  
N. L. Zhang ◽  
W. Zhang

Partially observable Markov decision processes (POMDPs) have recently become popular among many AI researchers because they serve as a natural model for planning under uncertainty. Value iteration is a well-known algorithm for finding optimal policies for POMDPs. It typically takes a large number of iterations to converge. This paper proposes a method for accelerating the convergence of value iteration. The method has been evaluated on an array of benchmark problems and was found to be very effective: It enabled value iteration to converge after only a few iterations on all the test problems.


2019 ◽  
Vol 65 ◽  
pp. 307-341 ◽  
Author(s):  
Erwin Walraven ◽  
Matthijs T. J. Spaan

Partially Observable Markov Decision Processes (POMDPs) are a popular formalism for sequential decision making in partially observable environments. Since solving POMDPs to optimality is a difficult task, point-based value iteration methods are widely used. These methods compute an approximate POMDP solution, and in some cases they even provide guarantees on the solution quality, but these algorithms have been designed for problems with an infinite planning horizon. In this paper we discuss why state-of-the-art point-based algorithms cannot be easily applied to finite-horizon problems that do not include discounting. Subsequently, we present a general point-based value iteration algorithm for finite-horizon problems which provides solutions with guarantees on solution quality. Furthermore, we introduce two heuristics to reduce the number of belief points considered during execution, which lowers the computational requirements. In experiments we demonstrate that the algorithm is an effective method for solving finite-horizon POMDPs.


2014 ◽  
Vol 513-517 ◽  
pp. 1092-1095
Author(s):  
Bo Wu ◽  
Yan Peng Feng ◽  
Hong Yan Zheng

Bayesian reinforcement learning has turned out to be an effective solution to the optimal tradeoff between exploration and exploitation. However, in practical applications, the learning parameters with exponential growth are the main impediment for online planning and learning. To overcome this problem, we bring factored representations, model-based learning, and Bayesian reinforcement learning together in a new approach. Firstly, we exploit a factored representation to describe the states to reduce the size of learning parameters, and adopt Bayesian inference method to learn the unknown structure and parameters simultaneously. Then, we use an online point-based value iteration algorithm to plan and learn. The experimental results show that the proposed approach is an effective way for improving the learning efficiency in large-scale state spaces.


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Thai Duong ◽  
Duong Nguyen-Huu ◽  
Thinh Nguyen

Markov decision process (MDP) is a well-known framework for devising the optimal decision-making strategies under uncertainty. Typically, the decision maker assumes a stationary environment which is characterized by a time-invariant transition probability matrix. However, in many real-world scenarios, this assumption is not justified, thus the optimal strategy might not provide the expected performance. In this paper, we study the performance of the classic value iteration algorithm for solving an MDP problem under nonstationary environments. Specifically, the nonstationary environment is modeled as a sequence of time-variant transition probability matrices governed by an adiabatic evolution inspired from quantum mechanics. We characterize the performance of the value iteration algorithm subject to the rate of change of the underlying environment. The performance is measured in terms of the convergence rate to the optimal average reward. We show two examples of queuing systems that make use of our analysis framework.


2015 ◽  
Vol 13 (3) ◽  
pp. 47-57 ◽  
Author(s):  
Sanaa Chafik ◽  
Cherki Daoui

As many real applications need a large amount of states, the classical methods are intractable for solving large Markov Decision Processes. The decomposition technique basing on the topology of each state in the associated graph and the parallelization technique are very useful methods to cope with this problem. In this paper, the authors propose a Modified Value Iteration algorithm, adding the parallelism technique. They test their implementation on artificial data using an Open MP that offers a significant speed-up.


Sign in / Sign up

Export Citation Format

Share Document