LINEAR STABILITY ANALYSIS OF POISEUILLE-RAYLEIGH-BENARD FLOW AFFECTED BY A VERTICAL MAGNETIC FIELD AND A TEMPERATURE FIELD

2016 ◽  
Vol 47 (3) ◽  
pp. 277-293
Author(s):  
Chan Liu ◽  
Ming-Jiu Ni ◽  
Nian-Mei Zhang
2002 ◽  
Vol 469 ◽  
pp. 189-207 ◽  
Author(s):  
B. C. HOUCHENS ◽  
L. MARTIN WITKOWSKI ◽  
J. S. WALKER

This paper presents two linear stability analyses for an electrically conducting liquid contained in a vertical cylinder with a thermally insulated vertical wall and with isothermal top and bottom walls. There is a steady uniform vertical magnetic field. The first linear stability analysis involves a hybrid approach which combines an analytical solution for the Hartmann layers adjacent to the top and bottom walls with a numerical solution for the rest of the liquid domain. The second linear stability analysis involves an asymptotic solution for large values of the Hartmann number. Numerically accurate predictions of the critical Rayleigh number can be obtained for Hartmann numbers from zero to infinity with the two solutions presented here and a previous numerical solution which gives accurate results for small values of the Hartmann number.


2013 ◽  
Vol 736 ◽  
pp. 464-494 ◽  
Author(s):  
P. Pearce ◽  
J. Daou

AbstractWe investigate the Rayleigh–Bénard convection problem within the context of a diffusion flame formed in a horizontal channel where the fuel and oxidizer concentrations are prescribed at the porous walls. This problem seems to have received no attention in the literature. When formulated in the low-Mach-number approximation the model depends on two main non-dimensional parameters, the Rayleigh number and the Damköhler number, which govern gravitational strength and reaction speed respectively. In the steady state the system admits a planar diffusion flame solution; the aim is to find the critical Rayleigh number at which this solution becomes unstable to infinitesimal perturbations. In the Boussinesq approximation, a linear stability analysis reduces the system to a matrix equation with a solution comparable to that of the well-studied non-reactive case of Rayleigh–Bénard convection with a hot lower boundary. The planar Burke–Schumann diffusion flame, which has been previously considered unconditionally stable in studies disregarding gravity, is shown to become unstable when the Rayleigh number exceeds a critical value. A numerical treatment is performed to test the effects of compressibility and finite chemistry on the stability of the system. For weak values of the thermal expansion coefficient $\alpha $, the numerical results show strong agreement with those of the linear stability analysis. It is found that as $\alpha $ increases to a more realistic value the system becomes considerably more stable, and also exhibits hysteresis at the onset of instability. Finally, a reduction in the Damköhler number is found to decrease the stability of the system.


Fluids ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 177 ◽  
Author(s):  
Tagawa

Linear stability analysis of liquid metal flow driven by a constant pressure gradient in an insulating rectangular duct under an external uniform magnetic field was carried out. In the present analysis, since the Joule heating and induced magnetic field were neglected, the governing equations consisted of the continuity of mass, momentum equation, Ohm’s law, and conservation of electric charge. A set of linearized disturbance equations for the complex amplitude was decomposed into real and imaginary parts and solved numerically with a finite difference method using the highly simplified marker and cell (HSMAC) algorithm on a two-dimensional staggered mesh system. The difficulty of the complex eigenvalue problem was circumvented with a Newton—Raphson method during which its corresponding eigenfunction was simultaneously obtained by using an iterative procedure. The relation among the Reynolds number, the wavenumber, the growth rate, and the angular frequency was successfully obtained for a given value of the Hartmann number as well as for a direction of external uniform magnetic field.


Sign in / Sign up

Export Citation Format

Share Document