INFLUENCE OF LONGITUDINAL HEAT CONDUCTION EFFECTS IN A HEAT SINK OVER THE THERMAL CREEP IN A MICROCHANNEL: CONJUGATE HEAT TRANSFER MECHANISM

2019 ◽  
Vol 50 (9) ◽  
pp. 899-920
Author(s):  
I. G. Monsivais ◽  
J. J. Lizardi ◽  
Federico Mendez
2019 ◽  
Vol 11 (1) ◽  
pp. 153-156
Author(s):  
István Padrah ◽  
Judit Pásztor ◽  
Rudolf Farmos

Abstract Thermal conduction is a heat transfer mechanism. It is present in our everyday lives. Studying thermal conductivity helps us better understand the phenomenon of heat conduction. The goal of this paper is to measure the thermal conductivity of various materials and compare results with the values provided by the manufacturers. To achieve this we assembled a measuring instrument and performed measurements on heat insulating materials.


2021 ◽  
Vol 6 (7) ◽  
Author(s):  
Varun Kumar ◽  
Mohammed Azharudeen ◽  
Charish Pothuri ◽  
Karthick Subramani

1979 ◽  
Vol 36 (1) ◽  
pp. 37-42 ◽  
Author(s):  
I. G. Chumak ◽  
V. G. Pogontsev

2021 ◽  
Author(s):  
Ji Hwan Lim ◽  
Minkyu Park

Abstract The onset of nucleate boiling (ONB) is the point at which the heat transfer mechanism in fluids changes and is one of the thermo-hydraulic factors that must be considered when establishing a cooling system operation strategy. Because the high heat flux of several MW/m2, which is loaded within a tokamak, is applied under a one-side heating condition, it is necessary to determine a correlative relation that can predict ONB under special heating conditions. In this study, the ONB of a one-side-heated screw tube was experimentally analyzed via a subcooled flow boiling experiment. The helical nut structure of the screw tube flow path wall allows for improved heat transfer performance relative to smooth tubes, providing a screw tube with a 53.98% higher ONB than a smooth tube. The effects of the system parameters on the ONB heat flux were analyzed based on the changes in the heat transfer mechanism, with the results indicating that the flow rate and degree of subcooling are proportional to the ONB heat flux because increasing these factors improves the forced convection heat transfer and increases the condensation rate, respectively. However, it was observed that the liquid surface tension and latent heat decrease as the pressure increases, leading to a decrease in the ONB heat flux. An evaluation of the predictive performance of existing ONB correlations revealed that most have high error rates because they were developed based on ONB experiments on micro-channels or smooth tubes and not under one-side high heat load conditions. To address this, we used dimensional analysis based on Python code to develop new ONB correlations that reflect the influence of system parameters.


Sign in / Sign up

Export Citation Format

Share Document