EXPERIMENTAL AND NUMERICAL CHARACTERIZATION OF TRANSIENT INSERETION OF HEAT FLUX GAGES IN A CYLINDRICAL BLACK BODY CAVITY AT 1100 °C

Equipment ◽  
2006 ◽  
Author(s):  
A. N. Abdelmessih ◽  
T. Horn
2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Mostafa Abuseada ◽  
Nesrin Ozalp

Abstract The numerical characterization of a 10 kWe xenon arc high flux solar simulator is thoroughly presented and performed using two approaches: a forward Monte Carlo ray tracing (MCRT) method and an inverse ray tracing method. Experimental characterization was previously performed for the solar simulator using an indirect flux mapping technique, where the experimental heat flux distribution was obtained at the focal plane and additional 12 planes away from the simulator. For the first numerical characterization method, an in-house MCRT code was used to determine the shape of the xenon arc to best model the simulator. It was determined that an isotropic volumetric source consisting of a hemisphere of 1 mm radius that is attached to a cylinder of 1 mm in radius and 10 mm in length well described the experimental results obtained. The in-house code was then used to generate heat flux maps similar to that obtained experimentally and determine the intensity at the focal plane to be used by the inverse ray tracing method presented for its validation. For the inverse method, intensity interpolation schemes of zeroth and first-order were examined in addition to different solution strategies. It is shown that a first-order interpolation scheme unnecessary complicates the inverse problem, leading to larger errors. In addition, a new approach of constraining the formulated system of equations with an equality constraint that works by eliminating intensity values not tracing back to the ellipsoidal reflector is proposed. This new approach provided intensity values with reduced percentage errors.


Author(s):  
Ming Fan ◽  
Yanhui Han ◽  
Xinyu Tan ◽  
Liang Fan ◽  
Ellen S. Gilliland ◽  
...  

2017 ◽  
Vol 103 ◽  
pp. 50-63 ◽  
Author(s):  
Marco Sasso ◽  
Michele Gabrio Antonelli ◽  
Edoardo Mancini ◽  
Mario Radoni ◽  
Dario Amodio

Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1252
Author(s):  
Hadar Elyashiv ◽  
Revital Bookman ◽  
Lennart Siemann ◽  
Uri ten Brink ◽  
Katrin Huhn

The Discrete Element Method has been widely used to simulate geo-materials due to time and scale limitations met in the field and laboratories. While cohesionless geo-materials were the focus of many previous studies, the deformation of cohesive geo-materials in 3D remained poorly characterized. Here, we aimed to generate a range of numerical ‘sediments’, assess their mechanical response to stress and compare their response with laboratory tests, focusing on differences between the micro- and macro-material properties. We simulated two endmembers—clay (cohesive) and sand (cohesionless). The materials were tested in a 3D triaxial numerical setup, under different simulated burial stresses and consolidation states. Variations in particle contact or individual bond strengths generate first order influence on the stress–strain response, i.e., a different deformation style of the numerical sand or clay. Increased burial depth generates a second order influence, elevating peak shear strength. Loose and dense consolidation states generate a third order influence of the endmember level. The results replicate a range of sediment compositions, empirical behaviors and conditions. We propose a procedure to characterize sediments numerically. The numerical ‘sediments’ can be applied to simulate processes in sediments exhibiting variations in strength due to post-seismic consolidation, bioturbation or variations in sedimentation rates.


Sign in / Sign up

Export Citation Format

Share Document