volume reconstruction
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 48)

H-INDEX

23
(FIVE YEARS 3)

2022 ◽  
Vol 12 ◽  
Author(s):  
Xingmei Wei ◽  
Huaiyu Zhang ◽  
Simeng Lu ◽  
Mengge Yang ◽  
Biao Chen ◽  
...  

Purpose: Owing to the characteristic anatomy, cochlear implantation (CI) for common cavity deformity (CCD) has resulted in varied outcomes and frequent facial and vestibular nerve stimulation. The current study analyzed the correlation among the distance between each electrode and cavity wall (abbreviation, D), programming parameters, and performances outcomes.Materials and Methods: The current, retrospective study included 25 patients (27 ears) with CCD underwent CI. The multiplanar volume reconstruction (MPVR) techniques were employed to reconstruct and evaluate the postoperative temporal bone CT. The D and maximum comfortable level (MCL) 6 months after CI, facial and vestibular nerve stimulation, and outcomes 1, 2, and 3 years after CI pertaining to the questionnaires were documented and analyzed.Results: The patients were divided into symptomatic (10, 37%) and asymptomatic (17, 63%) groups according to with or without facial and vestibular nerve stimulation. The MCL pertaining to the symptomatic group was significantly lower than asymptomatic group, but Categories of Auditory Performance (CAP) scores 1 year after surgery was better (p < 0.05). The subjects were divided into flat (12, 44.4%) and curved (15, 55.6%) groups based on the contour of MCL map. The MCL and D were lower and shorter in the curved group than the flat group, and CAP score 1 year after surgery and Speech Intelligibility Rating (SIR) 3 years after surgery were better (p < 0.05).Conclusion: Although abnormal reactions such as facial and vestibular nerve stimulation were observed to be more frequent, lower MCL and better outcomes were observed in relation to the shorter D.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Prashant Kumar ◽  
Prakash Joshi ◽  
Jigmi Basumatary ◽  
Partha Pratim Mondal

AbstractOptical imaging is paramount for disease diagnosis and to access its progression over time. The proposed optical flow imaging (VFC/iLIFE) is a powerful technique that adds new capabilities (3D volume visualization, organelle-level resolution, and multi-organelle screening) to the existing system. Unlike state-of-the-art point-illumination-based biomedical imaging techniques, the sheet-based VFC technique is capable of single-shot sectional visualization, high throughput interrogation, real-time parameter estimation, and instant volume reconstruction with organelle-level resolution of live specimens. The specimen flow system was realized on a multichannel (Y-type) microfluidic chip that enables visualization of organelle distribution in several cells in-parallel at a relatively high flow-rate (2000 nl/min). The calibration of VFC system requires the study of point emitters (fluorescent beads) at physiologically relevant flow-rates (500–2000 nl/min) for determining flow-induced optical aberration in the system point spread function (PSF). Subsequently, the recorded raw images and volumes were computationally deconvolved with flow-variant PSF to reconstruct the cell volume. High throughput investigation of the mitochondrial network in HeLa cancer cell was carried out at sub-cellular resolution in real-time and critical parameters (mitochondria count and size distribution, morphology, entropy, and cell strain statistics) were determined on-the-go. These parameters determine the physiological state of cells, and the changes over-time, revealing the metastatic progression of diseases. Overall, the developed VFC system enables real-time monitoring of sub-cellular organelle organization at a high-throughput with high-content capacity.


2021 ◽  
Author(s):  
Linnaea E Ostroff ◽  
Janeth Perez-Garza ◽  
Emily Parrish ◽  
Zachary Deane

Electron microscopy (EM) volume reconstruction is a powerful tool for investigating the fundamental structure of brain circuits, but the full potential of this technique is limited by the difficulty of integrating molecular information. High quality ultrastructural preservation is necessary for EM reconstruction, and intact, highly contrasted cell membranes are essential for following small neuronal processes through serial sections. Unfortunately, the antibody labeling methods used to identify most endogenous molecules result in compromised morphology, especially of membranes. Cryofixation can produce superior morphological preservation and has the additional advantage of allowing indefinite storage of valuable samples. We have developed a method based on cryofixation that allows sensitive immunolabeling of endogenous molecules, preserves excellent ultrastructure, and is compatible with high-contrast staining for serial EM reconstruction.


Author(s):  
Lenuța Pană ◽  
Simona Moldoveanu ◽  
Luminița Moraru

This paper aims to provide a sound estimation of the true value and proportion of white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) of the brain DTI images for a proper 3D volume reconstruction. During the pre-processing stage, two nonlinear filters are operated, i.e. bilateral and anisotropic diffusion. The segmentation of each brain tissue is performed using the k-means clustering algorithm. To minimize filters bias and for obtaining the best reproducible results, a statistical analysis has been performed. Thus, the skewness and kurtosis statistics features were computed for each segmented brain tissue and filter. The fuzzy k-means method allows for clustering analysis and the Bland-Altman analysis investigates the agreement between two filtering techniques of the same statistics feature and brain tissue. Then the 3D reconstruction method is presented using ImageJ and the image stacks for raw and processed data. We conclude that anisotropic diffusion filter offers the best results and 3D reconstruction of brain tissues is feasible.


2021 ◽  
Author(s):  
Nodirov Jakhongir ◽  
Akmalbek Abdusalomov ◽  
Taeg Keun Whangbo

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Hongjuan Jin ◽  
Weihai Peng

Objective. To investigate the application of multislice spiral CT in volume reconstruction of congenital microtia. Methods. Sixty patients who underwent auricle reconstruction in Otolaryngology Hospital of our hospital from April 2020 to April 2021 were selected. All patients had no mental disorders and normal cognitive ability and volunteered to participate in this study. Multislice spiral CT was used to evaluate the diagnostic accuracy of multislice spiral CT by scanning the morphology of the ossicular chain and the bone destruction of the selected patients. Results. MSCT can clearly display the structure of ear. Conclusion. MSCT can clearly reflect the external ear and the structure of the ear in patients with congenital microtia and distinguish the different types of patients obviously. Multiplane reconstruction and volume reconstruction can clearly display the fine structure of the patient’s ear, which has important reference value for surgery.


2021 ◽  
Vol 11 (17) ◽  
pp. 8166 ◽  
Author(s):  
Federico Bernardini ◽  
Giacomo Vinci ◽  
Emanuele Forte ◽  
Arianna Mocnik ◽  
Josip Višnjić ◽  
...  

We present the investigation of two rather ephemeral archaeological sites located in the municipality of Oprtalj/Portole (Croatian Istria) by means of integrated archaeological, geophysical and remote sensing techniques. The results obtained confirm the first interpretation of these contexts; a protohistoric burial mound and a small hillfort, respectively. We further obtained detailed information about both deposits through 2D and 3D remote sensing and geophysical studies that produced maps, volumes, profiles and cross-sections. At the first site, the volume reconstruction of both the inner stone core and the superimposed earth of the putative stone mound also allowed us to estimate the labour necessary to erect the structure. In conclusion, our study demonstrates that the integrated approach can be valuable not only to acquire novel data about the archaeological deposits but also to calibrate future investigations and to plan effective measures for heritage management, monitoring and valorization.


Author(s):  
Alex Ling Yu Hung ◽  
John Galeotti

Abstract Purpose Ultrasound compounding is to combine sonographic information captured from different angles and produce a single image. It is important for multi-view reconstruction, but as of yet there is no consensus on best practices for compounding. Current popular methods inevitably suppress or altogether leave out bright or dark regions that are useful and potentially introduce new artifacts. In this work, we establish a new algorithm to compound the overlapping pixels from different viewpoints in ultrasound. Methods Inspired by image fusion algorithms and ultrasound confidence, we uniquely leverage Laplacian and Gaussian pyramids to preserve the maximum boundary contrast without overemphasizing noise, speckles, and other artifacts in the compounded image, while taking the direction of the ultrasound probe into account. Besides, we designed an algorithm that detects the useful boundaries in ultrasound images to further improve the boundary contrast. Results We evaluate our algorithm by comparing it with previous algorithms both qualitatively and quantitatively, and we show that our approach not only preserves both light and dark details, but also somewhat suppresses noise and artifacts, rather than amplifying them. We also show that our algorithm can improve the performance of downstream tasks like segmentation. Conclusion Our proposed method that is based on confidence, contrast, and both Gaussian and Laplacian pyramids appears to be better at preserving contrast at anatomic boundaries while suppressing artifacts than any of the other approaches we tested. This algorithm may have future utility with downstream tasks such as 3D ultrasound volume reconstruction and segmentation.


Sign in / Sign up

Export Citation Format

Share Document