MIXED FORCED AND FREE CONVECTION FROM A VERTICAL HEATED PLATE TO AIR

Author(s):  
W. B. Hall ◽  
P. H. Price
Keyword(s):  
1973 ◽  
Vol 95 (3) ◽  
pp. 289-294 ◽  
Author(s):  
N. E. Hardwick ◽  
E. K. Levy

The steady, laminar, two-dimensional wake above a thin vertical isothermal heated plate cooled by free convection was investigated theoretically and experimentally. The system of partial differential equations governing the fluid motion and heat transfer in the vicinity of the plate and in the near wake region was formulated and solved using finite difference techniques. Using air, the temperature and velocity profiles in the wake region were measured experimentally using a laser holographic interferometer and a constant temperature hot wire anemometer.


1978 ◽  
Vol 100 (3) ◽  
pp. 429-434 ◽  
Author(s):  
H. Imura ◽  
R. R. Gilpin ◽  
K. C. Cheng

The flow over a horizontal isothermally heated plate at Reynolds numbers below that at which hydrodynamic instabilities exist, is characterized by a region of laminar forced convection near the leading edge, followed by the onset of longitudinal vortices and their growth to a finite amplitude and finally a transition to a turbulent flow regime. Results are presented for the temperature profiles, the thermal boundary layer thickness, and the local Nusselt number. They are used to identify the various flow regimes. It was found that the transition from laminar forced convection to turbulent convection was characterized by the parameter Grx/Rex1.5 falling in the range 100 to 300. For values of this parameter greater than 300 the heat transfer rates were independent of Reynolds number and typical of those for turbulent free convection from a horizontal surface.


1985 ◽  
Vol 19 (5) ◽  
pp. 811-815
Author(s):  
A. A. Berezovskii ◽  
A. A. Kovkova ◽  
Yu. A. Sokovishin

2012 ◽  
Vol 712 ◽  
pp. 418-450 ◽  
Author(s):  
Juan Pedro Mellado

AbstractDirect numerical simulations of free convection over a smooth, heated plate are used to investigate unbounded, unsteady turbulent convection. Four different boundary conditions are considered: free-slip or no-slip walls, and constant buoyancy or constant buoyancy flux. It is first shown that, after the initial transient, the vertical structure agrees with observations in the atmospheric boundary layer and predictions from classical similarity theory. A quasi-steady inner layer and a self-preserving outer layer are clearly distinguished, with an overlap region between them of constant turbulent buoyancy flux. The extension of the overlap region reached in our simulations is more than 100 wall units$ \mathop{ ({\kappa }^{3} / {B}_{s} )}\nolimits ^{1/ 4} $, where${B}_{s} $is the surface buoyancy flux and$\kappa $the corresponding molecular diffusivity (the Prandtl number is one). The buoyancy fluctuation inside the overlap region already exhibits the$\ensuremath{-} 1/ 3$power-law scaling with height for the four types of boundary conditions, as expected in the local, free-convection regime. However, the mean buoyancy gradient and the vertical velocity fluctuation are still evolving toward the corresponding power laws predicted by the similarity theory. The second major result is that the relation between the Nusselt and Rayleigh numbers agrees with that reported in Rayleigh–Bénard convection when the heated plate is interpreted as half a convection cell. The range of Rayleigh numbers covered in the simulations is then$5\ensuremath{\times} 1{0}^{7} \text{{\ndash}} 1{0}^{9} $. Further analogies between the two problems indicate that knowledge can be transferred between steady Rayleigh–Bénard and unsteady convection. Last, we find that the inner scaling based on$\{ {B}_{s} , \hspace{0.167em} \kappa \} $reduces the effect of the boundary conditions to, mainly, the diffusive wall layer, the first 10 wall units. There, near the plate, free-slip conditions allow stronger mixing than no-slip ones, which results in 30 % less buoyancy difference between the surface and the overlap region and 30–40 % thinner diffusive sublayers. However, this local effect also entails one global, substantial effect: with an imposed buoyancy, free-slip systems develop a surface flux 60 % higher than that obtained with no-slip walls, which implies more intense turbulent fluctuations across the whole boundary layer and a faster growth.


Sign in / Sign up

Export Citation Format

Share Document