overlap region
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 15)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Bolin Sun ◽  
Long Ma ◽  
Tingxi Liu ◽  
Xing Huang

Abstract The overlap region between the eastern fringe of the Asian westerly region and the temperate continental-monsoon climate transition zone is sensitive to climate changes and is characterized by fragile ecosystems. It is necessary to uncover the patterns of long-term historical climate variability there. A standardized tree-ring width chronology was constructed based on the tree-ring samples collected from four representative tree species in four typical areas in the overlap region, and the 203- to 343-year annual mean minimum temperature series in the overlap region were reconstructed. The reconstructed series overlapped well with extreme climate events and low-temperature periods recorded in historical data. Therefore, the reconstructed model is stable and reliable. As suggested by the reconstructed series, the variability of annual mean minimum temperature was increasingly drastic from east to west in the overlap region, with gradually shorter periodicities. In the 19th century, the high-latitude area was in the high-temperature period, and the entire overlap region experienced significant low-temperature periods lasting 20–45 years till the 1950s. The western part had an earlier start time of low-temperature periods, longer cooling duration, and slower cooling rate than the central part. The overlap region experienced a significant warming period in approximately the last half-century, with temperature increasing faster in the western and eastern parts than in the central part. The temperature variability in the overlap region was more intense in the last two centuries, with shorter periodicities and a larger proportion of cold periods. The central and western parts of the Asian westerly region, the mid- to high-latitude regions of the transition zone, and the overlap region saw significantly low-temperature periods or drastic cooling trends (the Little Ice Age) in the first half of the 19th century and significant warming trends under global warming afterwards. The influences of these changes might have been exacerbated by the westerly circulation. This study not only provides new insight into the use of dendroclimatology to extract temperature series in the Asian westerly region and the transition zone but also serves as a reference for research on global climate change.


2021 ◽  
Vol 153 (10) ◽  
Author(s):  
John M. Squire ◽  
Carlo Knupp

X-ray diffraction studies of muscle have provided a wealth of information on muscle structure and physiology, and the meridian of the diffraction pattern is particularly informative. Reconditi et al. (2014. J. Physiol.https://doi.org/10.1113/jphysiol.2013.267849) performed superb experiments on changes to the M3 meridional peak as a function of sarcomere length (SL). They found that the M3 intensity dropped almost linearly as sarcomere length increased at least to about SL = 3.0 µm, and that it followed the same track as tension, pointing toward zero at the end of overlap at ∼3.6 µm. They concluded that, just as tension could only be generated by overlapped myosin heads, so ordered myosin heads contributing to the M3 intensity could only occur in the overlap region of the A-band, and that nonoverlapped heads must be highly disordered. Here we show that this conclusion is not consistent with x-ray diffraction theory; it would not explain their observations. We discuss one possible reason for the change in M3 intensity with increasing sarcomere length in terms of increasing axial misalignment of the myosin filaments that at longer sarcomere lengths is limited by the elastic stretching of the M-band and titin.


2021 ◽  
pp. 102178
Author(s):  
Jie Yin ◽  
Dengzhi Wang ◽  
Huiliang Wei ◽  
Liangliang Yang ◽  
Linda Ke ◽  
...  

Author(s):  
Jinyuan Gu ◽  
Guoan Zhang ◽  
Haibin Lv ◽  
Wei Duan

AbstractAs a multi hop self-organizing network, wireless sensor network has the ability to cooperatively sense, collect and process the information of the sensed objects. The applications of WCN in 5G-based Internet of Vehicles (5G-IoV), using information fusion and intelligent information processing technologies, can obtain more reliable and accurate detection parameters, which has been widely concerned. However, the massive connectivity and information exchange in 5G-IoV pose great challenges to the bandwidth efficiency. In order to overcome these issues in 5G-IoV networks, a performance enhanced scheme based on non-orthogonal multiple access (NOMA) is proposed. In the proposed scheme, different vehicle locations are respectively discussed, i.e., whether in the overlap region of cluster head vehicles (CHVs). In particular, different to conventional works, each receiving node only decodes the desired signal to avoid performance loss provided from the poor channel quality limitation. On the other hand, all CHVs decode-and-forward new superposition coded signals with new power allocation factors, while that the maximum ratio combining is utilized at receivers to further improve the ergodic sum-rate (SR) and probability of conflict. The closed-form expressions of ergodic SR for our proposed scheme are analyzed under the independent Rayleigh fading channels. Numerical results corroborating our theoretical analysis show that the superposition coded signal transmission scheme applied to the proposed NOMA-IoV improves the ergodic SR performance significantly compared with the existing works, especially for the high signal-to-noise region.


2021 ◽  
Author(s):  
Jinyuan Gu ◽  
Guoan Zhang ◽  
Haibin Lv ◽  
Wei Duan

Abstract As a multi hop self-organizing network, wireless sensor network (WSN) has the ability to cooperatively sense, collect and process the information of the sensed objects. The applications of WCN in 5G-based Internet of Vehicles (5G-IoV), using information fusion and intelligent information processing technologies, can obtain more reliable and accurate detection parameters, which has been widely concerned. However, the massive connectivity and information exchange in 5G-IoV pose great challenges to the bandwidth efficiency. In order to overcome these issues in 5G-IoV networks, a performance enhanced scheme based on non-orthogonal multiple access (NOMA) is proposed. In the proposed scheme, different vehicle locations are respectively discussed, i.e., whether in the overlap region of cluster head vehicles (CHVs). In particular, different to conventional works, each receiving node only decodes the desired signal to avoid performance loss provided from the poor channel quality limitation. On the other hand, all CHVs decode-and-forward (DF) new superposition coded signals with new power allocation factors, while that the maximum ratio combining (MRC) is utilized at receivers to further improve the ergodic sum-rate (SR) and probability of conflict. The closed-form expressions of ergodic SR for our proposed scheme are analyzed under the independent Rayleigh fading channels. Numerical results corroborating our theoretical analysis show that the superposition coded signal transmission scheme applied to the proposed NOMA-IoV improves the ergodic SR performance significantly compared with the existing works, especially for the high signal-to-noise (SNR) region.


2020 ◽  
Author(s):  
Jinyuan Gu ◽  
Guoan Zhang ◽  
Haibin Lv ◽  
Wei Duan

Abstract As a multi hop self-organizing network, wireless sensor network (WSN) has the ability to cooper- atively sense, collect and process the information of the sensed objects. The applications of WCN in 5G-based Internet of V ehicles (5G-IoV), using information fusion and intelligent information processing technologies, can obtain more reliable and accurate detection parameters, which has been widely concerned. However, the massive connectivity and information exchange in 5G-IoV pose great challenges to the bandwidth efficiency. In order to overcome these issues in 5G-IoV networks, a performance enhanced scheme based on non-orthogonal multiple access (NOMA) is proposed. In the proposed scheme, different vehicle locations are respectively discussed, i.e., whether in the overlap region of cluster head vehicles (CHVs). In particular, different to conventional works, each receiving node only decodes the desired signal to avoid performance loss provided from the poor channel quality limitation.On the other hand, all CHVs decode-and-forward (DF) new superposition coded signals with new power allocation factors, while that the maximum ratio combining (MRC) is utilized at receivers to further improve the ergodic sum-rate (SR) and probability of conflict. The closed-form expressions of ergodic SR for our proposed scheme are analyzed under the independent Rayleigh fading channels. Numerical results corroborating our theoretical analysis show that the superposition coded signal transmission scheme applied to the proposed NOMA-IoV improves the ergodic SR performance significantly compared with the existing works, especially for the high signal-to-noise (SNR) region.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
HaiYang Wang ◽  
JunQi Liu ◽  
YiFei Pi ◽  
Qi Liu ◽  
Yang Mi ◽  
...  

Abstract Objective To assess the effects of various treatment planning parameters to identify the optimal gap distance for precise two-segment total body irradiation (TBI) using helical tomotherapy (HT) with fixed jaw mode. Methods and materials Data of a treatment plan for 8 acute leukemia patients (height range: 109–130 cm) were analyzed. All patients underwent total-body computed tomography (CT) with 5-mm slice thickness. A lead wire, placed at 10 cm above the patella, was used to mark the boundary between the two segments. Target volumes and organs at risk were delineated using a Varian Eclipse 10.0 physician’s workstation. Different distances between the lead wire and the boundary of the two targets were used. CT images were transferred to the HT workstation to design the treatment plans, by adjusting parameters, including the field width (FW; 2.5 cm, and 5 cm), pitch (0.287 and 0.430), modulation factor (1.8). The plans were superimposed to analyze the dose distributions in the overlap region when varying target gap distances, FWs, pitches to determine the optimal combinations. Results The pitch did not affect the dose distribution in the overlap region. The dose distribution in the overlap region was mostly homogeneous when the target gap distance was equal to the FW. Increased FW diminished the effect of the target gap distance on the heterogeneous index of the overlap region. Conclusions In two-segment TBI treatments by HT with Helix mode, a gap distance equal to the FW may achieve optimal dose distribution in the overlap region.


Sign in / Sign up

Export Citation Format

Share Document