SHEAR LAYER AND WAVE STRUCTURE OVER PARTIALLY SPANNING CAVITIES

2013 ◽  
Vol 20 (1-2) ◽  
pp. 111-123
Author(s):  
Rajarshi Das ◽  
Heuy Dong Kim ◽  
Job Kurian
Keyword(s):  
2013 ◽  
Vol 11 (2) ◽  
pp. 46-54
Author(s):  
Rajarshi Das ◽  
Heuy Dong Kim ◽  
Job Kurian
Keyword(s):  

2013 ◽  
Vol 117 (1188) ◽  
pp. 175-192 ◽  
Author(s):  
R. Das ◽  
J. Kurian

AbstractThis work presents a study of acoustic oscillations generated and the wave structure associated with supersonic flow past wall mounted 3D open cavities of varying length-to-width (L/W) ratio. Experiments were conducted to investigate the acoustic signature generated by the cavities at freestream Mach number of 1·7. The effect ofL/Wratio of the cavity on the dominant modes of the acoustic signature registered on different walls of the cavities is investigated for anL/Wrange of 0·83-4. Shift in the dominant acoustic mode is observed asL/Wratio changes from 3 to 4. Statistical analysis of pressure data showed existence of acoustic waves and spreading of acoustic energy over different modes with change in cavity width. Time averaged schlieren visualisation indicated variation of shock and shear layer structure in the mainstream for the different cavities. Acoustic waves generated by the presence of the cavity and the dynamic behaviour of the shear layer were observed during instantaneous shadowgraph visualisation. Numerical simulation was done to make a prior assessment of the flow structure and the results are in good agreement with those from experiments. Ratio of mass exchange between cavity and mainflow and the cavity volume was observed to have profound effect on the magnitude of pressure oscillations generated by the cavities.


1994 ◽  
Author(s):  
Steven Martens ◽  
Kevin Kinzie ◽  
Dennis McLaughlin
Keyword(s):  

1987 ◽  
Vol 48 (C4) ◽  
pp. C4-119-C4-124
Author(s):  
H. N. PRESLES ◽  
P. BAUER ◽  
C. GUERRAUD ◽  
D. DESBORDES

2016 ◽  
Vol 26 (8) ◽  
pp. 815-826 ◽  
Author(s):  
Qing-fei Fu ◽  
Li-Jun Yang ◽  
Chao-Jie Mo

Sign in / Sign up

Export Citation Format

Share Document