Clinical and Radiographic Evaluation of Demineralized Freeze-Dried Cancellous Block Allograft for Ridge Augmentation: A Pilot Study

Author(s):  
Amir Moeintaghavi ◽  
Hamid Reza Arab ◽  
Leila Jabbareh ◽  
Farid Shiezadeh ◽  
Morteza Taheri ◽  
...  
2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Craig E. Hofferber ◽  
J. Cameron Beck ◽  
Peter C. Liacouras ◽  
Jeffrey R. Wessel ◽  
Thu P. Getka

Abstract Background The purpose of this study was to evaluate the volumetric changes in partially edentulous alveolar ridges augmented with customized titanium ridge augmentation matrices (CTRAM), freeze-dried bone allograft, and a resorbable collagen membrane. Methods A pre-surgical cone beam computed tomography (CBCT) scan was obtained for CTRAM design/fabrication and to evaluate pre-surgical ridge dimensions. Ridge augmentation surgery using CTRAM, freeze-dried bone allograft, and a resorbable collagen membrane was performed at each deficient site. Clinical measurements of the area of augmentation were made at the time of CTRAM placement and re-entry, and a 2nd CBCT scan 7 months after graft placement was used for volumetric analysis. Locations of each CTRAM in situ were also compared to their planned positions. Re-entry surgery and implant placement was performed 8 months after CTRAM placement. Results Nine subjects were treated with CTRAM and freeze-dried bone allograft. Four out of the nine patients enrolled (44.4%) experienced premature CTRAM exposure during healing, and in two of these cases, CTRAM were removed early. Early exposure did not result in total graft failure in any case. Mean volumetric bone gain was 85.5 ± 30.9% of planned augmentation volume (61.3 ± 33.6% in subjects with premature CTRAM exposure vs. 104.9% for subjects without premature exposure, p = 0.03). Mean horizontal augmentation (measured clinically) was 3.02 mm, and vertical augmentation 2.86 mm. Mean surgical positional deviation of CTRAM from the planned location was 1.09 mm. Conclusion The use of CTRAM in conjunction with bone graft and a collagen membrane resulted in vertical and horizontal bone gain suitable for implant placement.


2000 ◽  
Vol 42 (3) ◽  
pp. 133-138 ◽  
Author(s):  
Mehmet Nejat Arpak ◽  
Arzu (Üçok) Alkan ◽  
Ibrahim Nergiz

Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2389 ◽  
Author(s):  
Carlo Maiorana ◽  
Mattia Manfredini ◽  
Mario Beretta ◽  
Fabrizio Signorino ◽  
Andrea Bovio ◽  
...  

Background: bone augmentation by means of manually shaped titanium mesh is an established procedure to regenerate atrophic alveolar ridges and recreate a proper contour of the peri-implant bone anatomy. Conversely, current literature on the use of preformed titanium meshes instead of traditional grids remains lacking. Therefore, the aim of the present prospective study was to evaluate the use of preformed titanium mesh to support bone regeneration simultaneously to implant placement at dehiscence-type defects from clinical, radiological, and patient-related outcomes. Methods: 8 implants showing buccal dehiscence defects were treated with preformed titanium mesh directly fixed to flat abutments screwed to the implant. Intrasurgical clinical measurements and radiographic evaluations by means of cone-beam computed tomography scans were performed to assess the horizontal bone gain after 8 months from the augmentation surgery. Biological and patient-centered outcomes were also evaluated.; Results: clinically, a mean horizontal bone gain of 4.95 ± 0.96 mm, and a mean horizontal thickness of the buccal plate of 3.25 ± 0.46 mm were found. A mean horizontal bone gain of 5.06 ± 0.88 mm associated with a mean horizontal thickness of the buccal plate of 3.45 ± 0.68 mm were observed radiographically. From a macroscopic aspect, the remodeled graft appeared well integrated with the host bone. Well vascularized newly formed bone-like tissue was observed in intimate contact with the implants. Conclusions: preformed titanium mesh may be effective in supporting simultaneous horizontal bone regeneration at dehiscence-type peri-implant defects. Titanium mesh exposure still remain an issue in this type of surgery.


2015 ◽  
Vol 22 (1) ◽  
pp. 1-10 ◽  
Author(s):  
R. Scott Graham ◽  
Brian J. Samsell ◽  
Allison Proffer ◽  
Mark A. Moore ◽  
Rafael A. Vega ◽  
...  

OBJECT Bone allografts used for interbody spinal fusion are often preserved through either freeze drying or lowtemperature freezing, each having disadvantages related to graft preparation time and material properties. In response, a glycerol preservation treatment has been developed to maintain the biomechanical properties of allografts at ambient temperatures, requiring no thawing or rehydration and minimal rinsing prior to implantation. The authors conducted a prospective randomized study to compare the clinical results of glycerol-preserved Cloward dowels and those of freezedried Cloward dowels in anterior cervical discectomy and fusion. The primary outcome measures were evidence of fusion and graft subsidence, and the secondary outcome measures included adverse events, pain, and neck disability scores. METHODS Of 106 patients, 53 (113 levels of surgery) were randomly assigned to the glycerol-preserved graft group and 53 (114 levels of surgery) to the freeze-dried graft group. Subsidence was assessed at 3 and 6 months after implantation. Evidence of fusion was evaluated radiographically at 6 months postimplantation. Subsidence was quantitatively assessed based on physical measurements obtained from radiographs by using calibrated comparators, whereas fusion was also evaluated visually. Surgeons were blinded to treatment type during visual and physical assessments of the patients and the radiographs. RESULTS No one in either group had evidence of complete nonunion according to radiographic evaluation at the 6-month follow-up. Average subsidence for all graft-treated levels was 2.11 mm for the glycerol-preserved group and 2.73 mm for the freeze-dried group at the 3-month follow-up and 2.13 and 2.83 mm at the 6-month follow-up, respectively. The 2 treatment groups were statistically equivalent (p = 0.2127 and 0.1705 for the 3- and 6-month follow-up, respectively). No differences were noted between the graft types in terms of adverse event incidence or severity. CONCLUSIONS Glycerol-preserved bone allografts exhibit fusion results and subsidence values similar to those of their freeze-dried counterparts, potentially more favorable biomechanical properties, and significantly shorter preparation times.


Sign in / Sign up

Export Citation Format

Share Document