NATURAL CONVECTION FROM A CYLINDER IN SQUARE POROUS ENCLOSURE FILLED WITH NANOFLUIDS

2015 ◽  
Vol 18 (6) ◽  
pp. 559-567 ◽  
Author(s):  
Habibis Saleh ◽  
Ishak Hashim
2013 ◽  
Vol 16 (2) ◽  
pp. 167-182 ◽  
Author(s):  
Abdesslem Jbara ◽  
Hosni Souheil Harzallah ◽  
Khalifa Slimi ◽  
Abdallah Mhimid

2011 ◽  
Vol 110-116 ◽  
pp. 1613-1618 ◽  
Author(s):  
S. Kapoor ◽  
P. Bera

A comprehensive numerical study on the natural convection in a hydrodynamically anisotropic as well as isotropic porous enclosure is presented, flow is induced by non uniform sinusoidal heating of the right wall of the enclosure. The principal directions of the permeability tensor has been taken oblique to the gravity vector. The spectral Element method has been adopted to solve numerically the governing differential equations by using the vorticity-stream-function approach. The results are presented in terms of stream function, temperature profile and Nusselt number. The result show that the maximum heat transfer takes place at y = 1.5 when N is odd.. Also, increasing media permeability, by changing K* = 1 to K* = 0.2, increases heat transfer rate at below and above right corner of the enclosure. Furthermore, for the all values of N, profiles of local Nusselt number (Nuy) in isotropic as well as anisotropic media are similar, but for even values of N differ slightly at N = 2.. In particular the present analysis shows that, different periodicity (N) of temperature boundary condition has the significant effect on the flow pattern and consequently on the local heat transfer phenomena.


2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Ashok Kumar ◽  
P. Bera

A comprehensive numerical investigation on the natural convection in a hydrodynamically anisotropic porous enclosure is presented. The flow is due to nonuniformly heated bottom wall and maintenance of constant temperature at cold vertical walls along with adiabatic top wall. Brinkman-extended non-Darcy model, including material derivative, is considered. The principal direction of the permeability tensor has been taken oblique to the gravity vector. The spectral element method has been adopted to solve numerically the governing conservative equations of mass, momentum, and energy by using a stream-function vorticity formulation. Special attention is given to understand the effect of anisotropic parameters on the heat transfer rate as well as flow configurations. The numerical experiments show that in the case of isotropic porous enclosure, the maximum rates of bottom as well as side heat transfers (Nub and Nus) take place at the aspect ratio, A, of the enclosure equal to 1, which is, in general, not true in the case of anisotropic porous enclosures. The flow in the enclosure is governed by two different types of convective cells: rotating (i) clockwise and (ii) anticlockwise. Based on the value of media permeability as well as orientation angle, in the anisotropic case, one of the cells will dominate the other. In contrast to isotropic porous media, enhancement of flow convection in the anisotropic porous enclosure does not mean increasing the side heat transfer rate always. Furthermore, the results show that anisotropy causes significant changes in the bottom as well as side average Nusselt numbers. In particular, the present analysis shows that permeability orientation angle has a significant effect on the flow dynamics and temperature profile and consequently on the heat transfer rates.


2010 ◽  
Vol 86 (1) ◽  
pp. 261-281 ◽  
Author(s):  
S. Sivasankaran ◽  
Younghae Do ◽  
M. Sankar

Sign in / Sign up

Export Citation Format

Share Document