A NUMERICAL MODELING OF NATURAL CONVECTION AIR COOLING OF A BUTT-FUSION WELD

Author(s):  
Drake Norman ◽  
Todd Otanicar ◽  
Daniel W. Crunkleton ◽  
Amanda Hawkins
Volume 4 ◽  
2004 ◽  
Author(s):  
Jivtesh Garg ◽  
Mehmet Arik ◽  
Stanton Weaver ◽  
Seyed Saddoughi

Micro fluidics devices are conventionally used for boundary layer control in many aerospace applications. Synthetic Jets are intense small scale turbulent jets formed from entrainment and expulsion of the fluid in which they are embedded. The idea of using synthetic jets in confined electronic cooling applications started in late 1990s. These micro fluidic devices offer very efficient, high magnitude direct air-cooling on the heated surface. A proprietary synthetic jet designed in General Electric Company was able to provide a maximum air velocity of 90 m/s from a 1.2 mm hydraulic diameter rectangular orifice. An experimental study for determining the thermal performance of a meso scale synthetic jet was carried out. The synthetic jets are driven by a time harmonic signal. During the experiments, the operating frequency for jets was set between 3 and 4.5 kHz. The resonance frequency for a particular jet was determined through the effect on the exit velocity magnitude. An infrared thermal imaging technique was used to acquire fine scale temperature measurements. A square heater with a surface area of 156 mm2 was used to mimic the hot component and extensive temperature maps were obtained. The parameters varied during the experiments were jet location, driving jet voltage, driving jet frequency and heater power. The output parameters were point wise temperatures (pixel size = 30 μm), and heat transfer enhancement over natural convection. A maximum of approximately 8 times enhancement over natural convection heat transfer was measured. The maximum coefficient of cooling performance obtained was approximately 6.6 due to the low power consumption of the synthetic jets.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4046
Author(s):  
Ram Adhikari ◽  
Dawood Beyragh ◽  
Majid Pahlevani ◽  
David Wood

Light-emitting diode (LED) grow lights are increasingly used in large-scale indoor farming to provide controlled light intensity and spectrum to maximize photosynthesis at various growth stages of plants. As well as converting electricity into light, the LED chips generate heat, so the boards must be properly cooled to maintain the high efficiency and reliability of the LED chips. Currently, LED grow lights are cooled by forced convection air cooling, the fans of which are often the points of failure and also consumers of a significant amount of power. Natural convection cooling is promising as it does not require any moving parts, but one major design challenge is to improve its relatively low heat transfer rate. This paper presents a novel heat sink design for natural convection cooling of LED grow lights. The new design consists of a large rectangular fin array with openings in the base transverse to the fins to increase air flow, and hence the heat transfer. Numerical simulations and experimental testing of a prototype LED grow light with the new heat sink showed that openings achieved their intended purpose. It was found that the new heat sink can transfer the necessary heat flux within the safe operating temperature range of LED chips, which is adequate for cooling LED grow lights.


2016 ◽  
Vol 138 (9) ◽  
Author(s):  
Amin Bouraoui ◽  
Rachid Bessaïh

In this paper, a numerical study of three-dimensional (3D) natural convection air-cooling of two identical heat sources, simulating electronic components, mounted in a rectangular enclosure was carried out. The governing equations were solved by using the finite-volume method based on the SIMPLER algorithm. The effects of Rayleigh number Ra, spacing between heat sources d, and aspect ratios Ax in x-direction (horizontal) and Az in z-direction (transversal) of the enclosure on heat transfer were investigated. In steady state, when d is increased, the heat transfer is more important than when the aspect ratios Ax and Az are reduced. In oscillatory state, the critical Rayleigh numbers Racr for different values of spacing between heat sources and their aspect ratios, at which the flow becomes time dependent, were obtained. Results show a strong relation between heat transfers, buoyant flow, and boundary layer. In addition, the heat transfer is more important at the edge of each face of heat sources than at the center region.


Sign in / Sign up

Export Citation Format

Share Document