THE HIGH-SPEED FLOW STABILITY (HSFS) SOFTWARE PACKAGE FOR STABILITY ANALYSIS OF COMPRESSIBLE BOUNDARY LAYERS

2017 ◽  
Vol 48 (3) ◽  
pp. 223-242 ◽  
Author(s):  
A.O. Obraz ◽  
A. V. Fedorov
1951 ◽  
Vol 55 (485) ◽  
pp. 285-302 ◽  
Author(s):  
A. D. Young

SummaryIn this paper an attempt is made to review present knowledge of the subject of boundary layers at high speeds, without delving too deeply into the theory, and to draw attention to the results of practical interest. The introductory remarks describe broadly the special features of boundary layers in compressible flow, namely the existence of both thermal and velocity layers and their interdependence, the sensitivity of the external flow to the layers, and their inter-action with shock waves. The results of importance arising from the theory of the laminar boundary layer and of its stability to small disturbances are then discussed, followed by a summary of the present inadequate state of knowledge of turbulent boundary layer characteristics. It is noted that progress in the latter must await the production of more experimental data. The paper concludes with a discussion of scale effects and the allied problem of boundary layer—shock wave inter-action.


1999 ◽  
Vol 379 ◽  
pp. 333-350 ◽  
Author(s):  
M. J. TAYLOR ◽  
N. PEAKE

Following the investigation of the long-time limit of the impulse response of an incompressible swept boundary layer (Taylor & Peake 1998), we now consider the corresponding behaviour of two representative sets of compressible swept-wing profiles, one set in subsonic flow and the other in supersonic flow. The key feature of the incompressible analysis was the occurrence of modal pinch points in the cross-flow wavenumber plane, and in this paper the existence of such pinches over a wide portion of space in high-speed flow is confirmed. We also show that close to the attachment line, no unstable pinches in the chordwise wavenumber plane can be found for these realistic wing profiles, contrary to predictions made previously for incompressible flow with simple Falker–Skan–Cooke profiles (Lingwood 1997). A method for searching for absolute instabilities is described and applied to the compressible boundary layers, and we are able to confirm that these profiles are not absolutely unstable. The pinch point property of the compressible boundary layers is used here to predict the maximum local growth rate achieved by waves in a wavepacket in any given direction. By determining the direction of maximum amplification, we are able to derive upper bounds on the amplification rate of the wavepacket over the wing, and initial comparison with experimental data shows that the resulting N-factors are more consistent than might be expected from existing conventional methods.


1997 ◽  
Vol 17 (Supplement2) ◽  
pp. 113-116
Author(s):  
Kenji HOSOI ◽  
Masaaki KAWAHASHI ◽  
Hiroyuki HIRAHARA ◽  
Kouju SHIOZAKI ◽  
Kenichirou SATOH

2021 ◽  
Vol 62 (7) ◽  
Author(s):  
D. I. Tatarenkova ◽  
E. Yu. Koroteeva ◽  
T. A. Kuli-zade ◽  
E. A. Karnozova ◽  
I. A. Znamenskaya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document