AgNO3 spray tests: advantages, weaknesses, and various applications to quantify chloride ingress into concrete. Part 2: Non-steady-state migration tests and chloride diffusion coefficients

2007 ◽  
Vol 40 (8) ◽  
pp. 783-799 ◽  
Author(s):  
Véronique Baroghel-Bouny ◽  
Patrick Belin ◽  
Matthias Maultzsch ◽  
Dominique Henry
Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1166 ◽  
Author(s):  
Ahmed Abd El Fattah ◽  
Ibrahim Al-Duais ◽  
Kyle Riding ◽  
Michael Thomas ◽  
Salah Al-Dulaijan ◽  
...  

Reinforcing steel corrosion, caused by chloride ingress into concrete, is the leading cause of reinforced concrete deterioration. One of the main findings in the literature for reducing chloride ingress is the improvement of the durability characteristics of concrete by the addition of supplementary cementitious materials (SCMs) and/or chemical agents to concrete mixtures. In this study, standard ASTM tests—such as rapid chloride permeability (RCPT), bulk diffusion and sorptivity tests—were used to measure concrete properties such as porosity, sorptivity, salt diffusion, and permeability. Eight different mixtures, prepared with different SCMs and corrosion inhibitors, were tested. Apparent and effective chloride diffusion coefficients were calculated using bound chloride isotherms and time-dependent decrease in diffusion. Diffusion coefficients decreased with time, especially with the addition of SCMs and corrosion inhibitors. The apparent diffusion coefficient calculated using the error function was slightly lower than the effective diffusion coefficient; however, there was a linear trend between the two. The formation factor was found to correlate with the effective diffusion coefficient. The results of the laboratory tests were compared and benchmarked to their counterparts in the marine exposure site in the Arabian Gulf in order to identify laboratory key tests to predict concrete durability. The overall performance of concrete containing SCMs, especially fly ash, were the best among the other mixtures in the laboratory and the field.


2016 ◽  
Vol 711 ◽  
pp. 241-248 ◽  
Author(s):  
Mickael Saillio ◽  
Véronique Baroghel-Bouny ◽  
Sylvain Pradelle

The main cause of premature deterioration of reinforced concrete structures is the corrosion of steel bars, induced by chloride ions (for example in marine environment) and/or by carbonation (atmospheric CO2). At the same time, environmental-induced degradations of concrete can also affect the structure, such as sulphate attack. This can lead to the formation of ettringite, inducing expansion inside the materials and finally degradation. Carbonation, chloride and sulphate ingress are usually studied separately in the literature. This is not representative of in-situ conditions since they can occur at the same time and can have an influence on each other. In this paper, chloride ingress are studied for concretes and cement pastes partially carbonated or/and in presence of sulphate in chloride contact solution. The mixtures contain OPC alone or with supplementary cementitious materials (SCM). SCMs are here pozzolanic materials (Fly Ash or Metakaolin) or alkali-activated materials such as ground granulated blast furnace slag (GGBS). The materials, partially carbonated (2 months in chamber at 1.5 % of CO2) or not, are put in contact with chloride solutions in presence of sulphate. This study focuses on the apparent chloride diffusion coefficients, as well as chloride binding isotherms which are obtained by the profile method. In addition, some aspects of the microstructure and of the pore structure are investigated, by using Mercury Intrusion Porosimetry and 27Al NMR, in order to better understand the results obtained relatively to the apparent chloride diffusion coefficients and to the chloride binding. Chloride ingress increases when sulphates are present in the contact solution for all cement materials tested (partially carbonated or not). In addition, chloride ingress is faster when the material is partially carbonated before contact with chloride solution. It appears that both carbonation or presence of sulphate decrease chloride binding, thus explaining the results. The results show an evolution of the properties as a function of the cement replacement ratio by SCMs.


Sign in / Sign up

Export Citation Format

Share Document