scholarly journals Studies on the Emergence of Rice Seedlings Seeded in Autumn and Winter : I. Relation of seeding time to survival of seeds in soil and rate of sprouting seeds

1969 ◽  
Vol 38 (1) ◽  
pp. 105-110 ◽  
Author(s):  
Masami HIMEDA ◽  
Sadakichi FUJII
2016 ◽  
Vol 27 (3-4) ◽  
pp. 55-69
Author(s):  
M. A. Listopadsky

With gradient analysis investigated the role of soil moisture in the formation of the modern population of birds in the reserve forest plantations. Soil moisture was divided into seven grades. For this purpose used grass cover and the coefficient of local moistening. His proposed PhD L. P. Travleev. This method allows knowing the degree of influence of soil moisture at the birds. We analyzed birds species composition, population, placement in space and power of influence factors (soil moisture). Investigations were carried out on the territory of the Biosphere Reserve «Askania Nova». We studied the birds which live in the reserve at the end of the summer, autumn and winter. This happened from 2006 to 2013 years. Specially was studied as permanently specific form of birds is found in a particular humidity. The degree of coupling was studied using the amount of information that transmits to the local bird humidification. For 68 species of birds are the options of the population density, coefficient koligatsii and data communication with the seven variants of soil moisture. For all kinds of set information «price» of each option dampening that contributes to the formation of a particular community of birds. Thus, the defined contribution to the formation of soil moisture forest bird communities. Species representation and density gradient within the test moisture is not in direct linear relationship from moisture and ranges from 11 (very coldly) to 50 species (moist soil). The density of the community varies from 0,5 birds / hectare (very dry) to 269 birds / hectare (fresh soil). The strongest link between the information and the formation of moisture gradient structure avifauna is typical in a fresh soil – bird on the edge, and wet – forest representatives. These types of humidification function is performed starting in the formation of two major blocks dendrophilous community. The steppe birds give way to forest representatives when the soil slightly moist. The main conclusion of our study includes the following: than wetter the soil the more species of birds lives in the forest; some graduation humidity are the most important for separate species of birds; it is very important for birds, there are places where one can drink water. Further invasive alien species can occur where the soil is moist. Forest with dry soil is already fully occupied by birds.


Author(s):  
Ahmad Z Al-Herrawy ◽  
Mohamed A Marouf ◽  
Mahmoud A. Gad

Genus Acanthamoeba causes 3 clinical syndromes amebic keratitis, granulomatous amebic encephalitis and disseminated granulomatous amebic disease (eg, sinus, skin and pulmonary infections). A total of 144 tap water samples were collected from Giza governorate, Egypt. Samples were processed for detection of Acanthamoeba species using non-nutrient agar (NNA) and were incubated at 30oC. The isolates of Acanthamoeba were identified to species level based on the morphologic criteria. Molecular characterization of the Acanthamoeba isolates to genus level was performed by using PCR. The obtained results showed that the highest occurrence percentage of Acanthamoeba species in water samples was observed in summer season (38.9%), then it decreased to be 30.6% in spring and 25% in each of autumn and winter. PCR analysis showed that 100% of 43 Acanthamoeba morphologically positive samples were positive by genus specific primer. In the present study eight species of Acanthamoeba can be morphologically recognized namely Acanthamoeba triangularis, Acanthamoeba echinulata, Acanthamoeba astronyxis, Acanthamoeba comandoni, Acanthamoeba griffini, Acanthamoeba culbertsoni, Acanthamoeba quina and Acanthamoeba lenticulata. In conclusion, the most common Acanthamoeba species in tap water was Acanthamoeba comandoni


2017 ◽  
Vol 2 (2) ◽  
pp. 29-36
Author(s):  
Xiao-Zhang Yu ◽  
◽  
Fei-Fei Zhang ◽  

2020 ◽  
Vol 63 (1) ◽  
pp. 70-76
Author(s):  
A. S. Zemisov ◽  
N. N. Saveleva ◽  
A. N. Yushkov ◽  
V. V. Chivilev ◽  
N. V. Borzykh

Sign in / Sign up

Export Citation Format

Share Document