low temperature treatment
Recently Published Documents


TOTAL DOCUMENTS

257
(FIVE YEARS 59)

H-INDEX

24
(FIVE YEARS 4)

2021 ◽  
pp. 43-48
Author(s):  
Aleksey Zagorulko ◽  
Andrii Zahorulko ◽  
Mariana Bondar ◽  
Alexander Postadzhiev ◽  
Eldar Ibaiev

The aim of the work is to determine the color formation of multicomponent fruit and vegetable pastes and dried powder fractions at the stages of low-temperature pre-concentration and drying, as one of the factors, maintaining the quality of the products. In the production of organic plant semi-finished products an important factor is the implementation of high-quality technological operations, including heat and mass transfer, which affects the final organoleptic characteristics of products. It is important to take into account the color of raw materials at the stages of blending puree in the production of paste and powder semi-finished products, which requires the introduction of a unified method for assessing the color of raw materials at each stage of the technological operation. An analysis of traditional methods for determining color formation has been performed, as a result of which it has been found, that the most effective method of evaluation is digital, based on photo processing of the prototype. According to this method, the evaluation of color formation in the manufacture of semi-finished fruits and vegetables in accordance with the proposed recipes has been conducted. Color indices of multicomponent pastes and dried fractions based on them for three prototypes were obtained. The brightness of all samples of pastes is in the range - 36.4… 37.0 % with a purity of tone 64.7… 78.2 %, which corresponds to the reddish-orange color, was obtained. After drying the test samples of pastes to the dried fraction, it has been found, that the brightness, depending on the percentage of raw materials in a sample falls in the range of 30.5… 33.2 %, at that the coloration corresponds to colors from bluish-purple to bluish-red with a purity of tone within 34.7… 34.9 %. As a result of evaluation of organoleptic indicators, it has been found, that according to the presented research samples, the best indicators have a sample with 40 % of raw apples, 20 % of pumpkin, 30 % of cranberries and 10 % of hawthorn. The obtained research data will be useful in the development of methods for the production of semi-finished products from vegetable raw materials. The applied digital method of color determination differs in simplicity and economy in comparison with colorimetric and spectrometric


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3419
Author(s):  
He Zhou ◽  
Yuqing Sun ◽  
Xin Li ◽  
Ziyu Zhou ◽  
Kexin Ma ◽  
...  

The phenotypic sex of fish is usually plastic. Low-temperature treatment induces the masculinization of Takifugu rubripes, resulting in pseudo-males (PM) with the physiological sex of a male (M) and genetic sex of a female (F). For a comparison of gonadal transcriptomes, we collected gonads from three groups of T. rubripes (F, M, and PM) for high-throughput transcriptome sequencing. The results provided 467,640,218 raw reads (70.15 Gb) and a total of 436,151,088 clean reads (65.43 Gb), with an average length of 150 bp. Only 79 differentially expressed genes (DEGs) were identified between F and PM, whereas 12,041 and 11,528 DEGs were identified between F and M, and PM and M, respectively. According to the functional annotation of DEGs, 13 DEGs related to gonadal development were screened (LOC101066759, dgat1, limk1, fbxl3, col6a3, fgfr3, dusp22b, svil, abhd17b, srgap3, tmem88b, bud4, and mustn10) which might participate in formating PM. A quantitative PCR of the DEGs confirmed the reliability of the RNA-seq. Our results provide an important contribution to the genome sequence resources for T. rubripes and insight into the molecular mechanism of masculinization in a cultured fish subject to low-temperature treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhonghuan Tian ◽  
Yujie Du ◽  
Fan Yang ◽  
Juan Zhao ◽  
Shuqi Liu ◽  
...  

Biological control is an environmentally friendly, safe, and replaceable strategy for disease management. Genome sequences of a certain biocontrol agent could lay a solid foundation for the research of molecular biology, and the more refined the reference genome, the more information it provides. In the present study, a higher resolution genome of Kloeckera apiculata 34-9 was assembled using high-throughput chromosome conformation capture (Hi-C) technology. A total of 8.07 M sequences of K. apiculata 34-9 genome was anchored onto 7 pesudochromosomes, which accounting for about 99.51% of the whole assembled sequences, and 4,014 protein-coding genes were annotated. Meanwhile, the detailed gene expression changes of K. apiculata 34-9 were obtained under low temperature and co-incubation with Penicillium digitatum treatments, respectively. Totally 254 differentially expressed genes (DEGs) were detected with low temperature treatment, of which 184 and 70 genes were upregulated and downregulated, respectively. Some candidate genes were significantly enriched in ribosome biosynthesis in eukaryotes and ABC transporters. The expression of gene Kap003732 and Kap001595 remained upregulated and downregulated through the entire time-points, respectively, indicating that they might be core genes for positive and negative response to low temperature stress. When co-incubation with P. digitatum, a total of 2,364 DEGs were found, and there were 1,247 upregulated and 1,117 downregulated genes, respectively. Biosynthesis of lysine and arginine, and phenylalanine metabolism were the highest enrichment of the cluster and KEGG analyses of the co-DEGs, the results showed that they might be involved in the positive regulation of K. apiculata 34-9 response to P. digitatum. The completeness of K. apiculata 34-9 genome and the transcriptome data presented here are essential for providing a high-quality genomic resource and it might serve as valuable molecular properties for further studies on yeast genome, expression pattern of biocontrol system, and postharvest citrus storage and preservation.


2021 ◽  
Vol 11 (2) ◽  
pp. 200
Author(s):  
I.A.N Pramadyanti ◽  
I.K Adi Atmika ◽  
I.D.G Ary Subagia

<p class="AbstractText">The experiment about the bending behavior of pipe composite based under the low-temperature treatment was carried out. As for the background of this research is that composite material become a suitable design with user need and it has behavior to substitute metal in engineering products. The research aims to investigate the effect of low temperature against to bending strength behavior of pipe from composite epoxy with jute fiber reinforcement. The low-temperature treatment was applied through an immersion process in dry ice as long as 60 minutes to produces a temperature of -33oC. The pipe composite was manufactured in lamination three layers of jute fabric using the vacuum injection molding process (VRTM). Then, the strength of the composite pipe was tested on the three-point bending method according to the ASTM D 790 standard. The testing results show that composite pipe with low-temperature treatment has a flexural strength average of about 76.559 MPa. Meanwhile, the compo-site pipe without treatment shows the strength of flexural average of about 52.435 MPa. They have the strength of flexural inclination is an average of 68%. In addition, the failures of composite in three-point bending test shows a shrank mode on the compression side and flat tearing at tension side due to the material becomes brittle. The conclusion that low-temperature treatment has an effective influence on the pipe composite mechanical properties.</p>


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1806
Author(s):  
Andrzej Kalisz ◽  
Joanna Gil ◽  
Edward Kunicki ◽  
Agnieszka Sękara ◽  
Andrzej Sałata ◽  
...  

Exposure of vegetable seedlings to lowered temperature affects their growth and the content of certain chemical constituents. Chilling activates defensive mechanisms against stress and leads to acclimatization which increases plant ability to withstand harsh field conditions. Thus, seedlings subjected to low-temperature treatment had altered metabolic pathways, and these changes can persist until harvest. We therefore assessed: (i) the direct response of broccoli seedlings to 1 week or 2 weeks at lowered temperatures (6 °C, 10 °C, 14 °C, and 18 °C—control); and (ii) the long-term effects of the latter treatments on phytochemical components level in mature heads of broccoli cultivated in the field. Chilling stress decreased seedling shoot and root fresh and dry weights, plant height, number of leaves, leaf area, leaf perimeter, and leaf width. The most spectacular reductions in these parameters were observed at 6 °C and 10 °C. Longer exposure to lowered temperature resulted in greater reduction in the values of morphological traits. Chilling led to reduction in L-ascorbic acid content in broccoli seedlings, while a 6 °C temperature caused an increase in soluble sugars. The highest content of dry weight, soluble sugars, and L-ascorbic acid were observed in the heads of plants exposed to 14 °C; however, the content of dry weight (at 10 °C) and L-ascorbic acid (at 6 °C and 10 °C) also increased in broccoli heads in comparison with the control. Longer chilling (for 2 weeks) generally increased the content of these constituents in mature broccoli. Lower temperature (6–14 °C) applied at seedling stage increased P and Zn contents in broccoli heads in comparison to the control, whereas plants treated with 10 °C had more K, Fe, and, together with 6 °C treatment, Cu. The lowest temperature applied to the seedlings (6 °C) caused an increase in Mn content, while no effects of seedling chilling was noted for Ca levels. Significant linear correlations were noted and regression models were developed for the content of dry weight, soluble sugars, and L-ascorbic acid in the broccoli heads based on the chosen seedling parameters. The results show that the effect of lowered temperature to which the seedlings were subjected persists also in the further stages of plant ontogenesis, causing permanent changes in the chemical composition of mature broccoli heads.


Sign in / Sign up

Export Citation Format

Share Document