scholarly journals Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal

2015 ◽  
Vol 16 (4) ◽  
pp. 304-316 ◽  
Author(s):  
Fan Bu ◽  
Xiang Hu ◽  
Li Xie ◽  
Qi Zhou
1998 ◽  
Vol 38 (1) ◽  
pp. 327-334 ◽  
Author(s):  
P. Pavan ◽  
P. Battistoni ◽  
P. Traverso ◽  
A. Musacco ◽  
F. Cecchi

The paper presents results coming from experiments on pilot scale plants about the possibility to integrate the organic waste and wastewater treatment cycles, using the light organic fraction produced via anaerobic fermentation of OFMSW as RBCOD source for BNR processes. The effluent from the anaerobic fermentation process, with an average content of 20 g/l of VFA+ lactic acid was added to wastewater to be treated in order to increase RBCOD content of about 60-70 mg/l. The results obtained in the BNR process through the addition of the effluent from the fermentation unit are presented. Significant increase of denitrification rate was obtained: 0.06 KgN-NO3/KgVSS d were denitrified in the best operative conditions studied. -Vmax shows values close to those typical of the pure methanol addition (about 0.3 KgN-NO3/KgVSS d). A considerable P release (35%) was observed in the anaerobic step of the BNR process, even if not yet a completely developed P removal process.


Author(s):  
Jakub Drewnowski ◽  
Jacek Makinia ◽  
Lukasz Kopec ◽  
Francisco-Jesus Fernandez-Morales

The biodegradation of particulate substrates starts by a hydrolytic stage. Hydrolysis is a slow reaction and usually becomes the rate limiting step of the organic substrates biodegradation. The objective of this work was to evaluate a novel hydrolysis concept based on a modification of the activated sludge model (ASM2d) and to compare it with the original ASM2d model. The hydrolysis concept was developed in order to accurately predict the use of internal carbon sources in enhanced biological nutrient removal (BNR) processes at a full scale facility located in northern Poland. Both hydrolysis concepts were compared based on the accuracy of their predictions for the main processes taking place at a full-scale facility. From the comparison, it was observed that the modified ASM2d model presented similar predictions to those of the original ASM2d model on the behavior of chemical oxygen demand (COD), NH4-N, NO3-N, and PO4-P. However, the modified model proposed in this work yield better predictions of the oxygen uptake rate (OUR) (up to 5.6 and 5.7%) as well as in the phosphate release and uptake rates.


2014 ◽  
Vol 22 (8) ◽  
pp. 5887-5894 ◽  
Author(s):  
Hong-bo Chen ◽  
Dong-bo Wang ◽  
Xiao-ming Li ◽  
Qi Yang ◽  
Guang-ming Zeng

2014 ◽  
Vol 69 (9) ◽  
pp. 1853-1858 ◽  
Author(s):  
Evina Katsou ◽  
Nicola Frison ◽  
Simos Malamis ◽  
Francesco Fatone

This work evaluated the use of different external carbon sources to promote the via-nitrite nutrient removal from anaerobic effluents. The carbon sources consisted of fermentation liquid produced from the organic fraction of municipal solid waste (OFMSW FL), drainage liquid produced from OFMSW, fermentation liquid produced from vegetable and fruit waste (VFW FL) and acetic acid. Denitritation and phosphorus uptake via nitrite were evaluated in two sequencing batch reactors, one treating the anaerobic supernatant produced from the co-digestion of OFMSW and activated sludge (highly nitrogenous anaerobic effluent – HNAE), and the other one treating the weakly nitrogenous anaerobic effluent (WNAE) from an upflow anaerobic sludge blanket reactor. The use of OFMSW FL to treat HNAE resulted in high nitrite (27 mgN/(gVSS·h) (VSS – volatile suspended solids) and phosphate uptake (15 mgP/gVSS·h). In the WNAE, nutrient kinetics were much slower. The use of acetic acid and VFW FL performed poorly, while the use of OFMSW FL, which was rich in butyric acid and propionic acid, resulted in significant nutrient removal (7 mgN/gVSS·h and 6 mgP/gVSS·h). The economic evaluation showed that the use of OFMSW FL is a less expensive option than the acetic acid use.


Sign in / Sign up

Export Citation Format

Share Document