scholarly journals Leukemia inhibitory factor as a regulator of steroidogenesis in human NCI-H295R adrenocortical cells

2008 ◽  
Vol 199 (3) ◽  
pp. 435-444 ◽  
Author(s):  
Irina V Mikhaylova ◽  
Tiina Jääskeläinen ◽  
Jarmo Jääskeläinen ◽  
Jorma J Palvimo ◽  
Raimo Voutilainen

Leukemia inhibitory factor (LIF) is a multiple function cytokine regulating the hypothalamic–pituitary–adrenal axis at the pituitary level. LIF and its receptor are expressed in the adrenal glands, suggesting their potential regulatory role also at the adrenal level. Our aim was to clarify the effects of LIF on adrenal steroidogenesis using cell culture conditions. NCI-H295R human adrenocortical cells were treated with LIF (0.01–100 ng/ml) for 3–48 h with or without 8-bromo-cAMP (8-Br-cAMP; 1 mM). LIF treatment augmented cortisol, dehydroepiandrosterone (DHEA), DHEA sulfate, androstenedione, and aldosterone production (up to 224, 211, 149, 229, and 170% of control respectively, P<0.05 for all). It increased basal steroidogenic acute regulatory protein (STAR) and 17α-hydroxylase/17,20-lyase (CYP17A1) mRNAs (up to 142 and 170% of control respectively, P<0.05) and the respective proteins, but decreased 3β-hydroxysteroid dehydrogenase type 2 (HSD3B2) mRNA (down to 72% of control, P<0.05), and protein. LIF also increased 8-Br-cAMP-induced cortisol and DHEA production and STAR mRNA accumulation, while it attenuated 8-Br-cAMP-induced HSD3B2 expression and androstenedione production. It had an additive effect on tumour necrosis factor-induced cortisol production. LIF had no effect on apoptosis, but it increased slightly the number of metabolically active cells (up to 120% of control, P<0.05). These findings indicate that LIF is a potential physiological and/or pathophysiological regulator of steroidogenesis at the adrenal level.

1996 ◽  
Vol 150 (1) ◽  
pp. 43-50 ◽  
Author(s):  
J Liu ◽  
P Heikkilä ◽  
A I Kahri ◽  
R Voutilainen

Abstract The steroidogenic acute regulatory protein (StAR) has recently been shown to be a factor necessary for cholesterol transport into adrenal and gonadal mitochondria, which is the regulated, rate-limiting step in steroidogenesis. We show here that StAR mRNA is highly expressed in normal adult adrenals (n=9), adrenocortical adenomas (n=16), adrenal hyperplasias (n=6), adrenocortical carcinomas (n=6) and adrenals adjacent to tumor tissues (n=9). There was a good correlation between the expression of StAR and the cholesterol side-chain cleavage enzyme/20,22-desmolase (P450 scc) mRNAs both in normal (r=0·93; P<0·01) and in tumor (r=0·97; P<0·001) tissues. No StAR mRNA was detected in Northern blots of liver, kidney, breast, parathyroid or phaeochromocytoma RNAs. In cultured adrenocortical cells, adrenocorticotropin (ACTH), (Bu)2cAMP, and cholera toxin increased StAR and P450 scc mRNA accumulation 6- to 18-fold, dose-and time-dependently. StAR (and P450 scc) mRNA increased relatively slowly in response to ACTH treatment, with the maximal increment at 24 h, while the mRNA of the early response gene c-fos peaked within 2 h. The protein kinase inhibitor H-7 inhibited basal and ACTH-induced StAR mRNA expression. Our results show that StAR mRNA is expressed at high levels in normal human adrenals and adrenocortical neoplasms. It is up-regulated in parallel with P450 scc by ACTH in adult adrenocortical cells, which suggests that ACTH is at least one of the key regulators of adrenal StAR expression. Journal of Endocrinology (1996) 150, 43–50


2018 ◽  
Vol 179 (3) ◽  
pp. R125-R141 ◽  
Author(s):  
Walter L Miller

Congenital adrenal hyperplasia (CAH) is a group of genetic disorders of adrenal steroidogenesis that impair cortisol synthesis, with compensatory increases in ACTH leading to hyperplastic adrenals. The term ‘CAH’ is generally used to mean ‘steroid 21-hydroxylase deficiency’ (21OHD) as 21OHD accounts for about 95% of CAH in most populations; the incidences of the rare forms of CAH vary with ethnicity and geography. These forms of CAH are easily understood on the basis of the biochemistry of steroidogenesis. Defects in the steroidogenic acute regulatory protein, StAR, disrupt all steroidogenesis and are the second-most common form of CAH in Japan and Korea; very rare defects in the cholesterol side-chain cleavage enzyme, P450scc, are clinically indistinguishable from StAR defects. Defects in 3β-hydroxysteroid dehydrogenase, which also causes disordered sexual development, were once thought to be fairly common, but genetic analyses show that steroid measurements are generally unreliable for this disorder. Defects in 17-hydroxylase/17,20-lyase ablate synthesis of sex steroids and also cause mineralocorticoid hypertension; these are common in Brazil and in China. Isolated 17,20-lyase deficiency can be caused by rare mutations in at least three different proteins. P450 oxidoreductase (POR) is a co-factor used by 21-hydroxylase, 17-hydroxylase/17,20-lyase and aromatase; various POR defects, found in different populations, affect these enzymes differently. 11-Hydroxylase deficiency is the second-most common form of CAH in European populations but the retention of aldosterone synthesis distinguishes it from 21OHD. Aldosterone synthase deficiency is a rare salt-losing disorder. Mild, ‘non-classic’ defects in all of these factors have been described. Both the severe and non-classic disorders can be treated if recognized.


Endocrinology ◽  
2015 ◽  
Vol 156 (5) ◽  
pp. 1750-1756 ◽  
Author(s):  
Kazutaka Nanba ◽  
Andrew Chen ◽  
Koshiro Nishimoto ◽  
William E. Rainey

There is considerable evidence supporting the role of calcium signaling in adrenal regulation of both aldosterone synthase (CYP11B2) and aldosterone production. However, there have been no studies that investigated the role played by the Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) in adrenal cells. In this study we investigated the role of CaMKK in adrenal cell aldosterone production. To determine the role of CaMKK, we used a selective CaMKK inhibitor (STO-609) in the HAC15 human adrenal cell line. Cells were treated with angiotensin II (Ang II) or K+ and evaluated for the expression of steroidogenic acute regulatory protein and CYP11B2 (mRNA/protein) as well as aldosterone production. We also transduced HAC15 cells with lentiviral short hairpin RNAs of CaMKK1 and CaMKK2 to determine which CaMKK plays a more important role in adrenal cell regulation of the calcium signaling cascade. The CaMKK inhibitor, STO-609, decreased aldosterone production in cells treated with Ang II or K+ in a dose-dependent manner. STO-609 (20μM) also inhibited steroidogenic acute regulatory protein and CYP11B2 mRNA/protein induction. CaMKK2 knockdown cells showed significant reduction of CYP11B2 mRNA induction and aldosterone production in cells treated with Ang II, although there was no obvious effect in CaMKK1 knockdown cells. In immunohistochemical analysis, CaMKK2 protein was highly expressed in human adrenal zona glomerulosa with lower expression in the zona fasciculata. In conclusion, the present study suggests that CaMKK2 plays a pivotal role in the calcium signaling cascade regulating adrenal aldosterone production.


Sign in / Sign up

Export Citation Format

Share Document