The dopaminergic regulation of anterior pituitary 45Ca2+ homeostasis and prolactin secretion

1986 ◽  
Vol 108 (3) ◽  
pp. 423-429 ◽  
Author(s):  
M. P. Schrey ◽  
H. J. Clark ◽  
S. Franks

ABSTRACT A role for the regulation of cellular Ca2+ homeostasis in the dopaminergic control of prolactin secretion was investigated in rat anterior pituitary glands. Withdrawal of dopamine stimulated the uptake of 45Ca2+ into hemipituitary tissue by 48% after 3 min. Radioisotope desaturation from tissue prelabelled with 45Ca2+ was significantly retarded in the presence of dopamine. Withdrawal of dopamine rapidly stimulated 45Ca2+ efflux from prelabelled tissue by 79% and was accompanied by a three- to fourfold rise in prolactin secretion. The 45Ca2+ efflux response to dopamine withdrawal was reduced in tissue prelabelled in the presence of dopamine. Agonist displacement with metoclopramide mimicked the effect of dopamine withdrawal on 45Ca2+ efflux and prolactin secretion. These observations demonstrate that the stimulation of prolactin release by dopamine withdrawal is accompanied by a redistribution of cellular Ca2+ and support the hypothesis that dopamine inhibits secretion by decreasing Ca2+ influx in the mammotroph cell. J. Endocr. (1986) 108, 423–429

1984 ◽  
Vol 102 (2) ◽  
pp. 153-159 ◽  
Author(s):  
T. R. Hall ◽  
S. Harvey ◽  
A. Chadwick

ABSTRACT Pituitary glands and hypothalami from broiler fowl were incubated in medium containing testosterone, and prolactin and GH release were determined. Pituitary glands were also preincubated for 20 h in medium containing testosterone, and then in medium containing various secretagogues. Testosterone inhibited the release of prolactin directly from the pituitary gland in a concentration-related manner. The hypothalamus stimulated the release of prolactin, but by a lesser amount in the presence of testosterone. When pituitary glands were preincubated with testosterone, subsequent release of prolactin was inhibited, except with the highest concentration which stimulated prolactin release. Hypothalamic extract (HE) markedly stimulated prolactin release from control pituitary glands although testosterone-primed glands were less responsive. The stimulation of prolactin release by thyrotrophin releasing hormone (TRH) and prostaglandin E2 (PGE2) was also reduced by preincubation of the pituitary glands with testosterone. Priming with testosterone did not affect the release of GH from pituitary glands alone, but reduced the TRH-, HE- and PGE2-stimulated release of GH. These results demonstrate that testosterone directly inhibits prolactin secretion and reduces the sensitivity of pituitary lactotrophs and somatotrophs to provocative stimuli. J. Endocr. (1984) 102, 153–159


1990 ◽  
Vol 123 (1) ◽  
pp. 37-42 ◽  
Author(s):  
T. Hugh Jones ◽  
Barry L. Brown ◽  
Pauline R. M. Dobson

Abstract. The effect of the kinin, kallidin (lysyl-brady-kinin) on phosphoinositide metabolism and prolactin secretion was examined in male rat anterior pituitary cells in primary culture. Kallidin was found to stimulate both total inositol phosphate production and prolactin release. The stimulation of inositol phosphate was biphasic in nature, similar to that previously reported for bradykinin, although kallidin was approximately 10-fold more potent. Kallidin also stimulated prolactin secretion provoking a maximal stimulation of 193.0±11.1 (sem)% at 1 μmol/l. These findings suggest that kallidin-induced prolactin secretion may be mediated intracellularly by activation of phosphoinositide metabolism. The B2 receptor antagonists had no significant inhibitory effects on kallidin-stimulated phosphoinositide metabolism or prolactin release. The B1 agonist des-Arg9-bradykinin has previously been shown to have no effect on either parameter. As the effects of kinins on anterior pituitary cells do not appear to be mediated by either of the known kinin receptors, they may, therefore, act via a hitherto unrecognised kinin receptor.


1989 ◽  
Vol 121 (4) ◽  
pp. 489-494 ◽  
Author(s):  
P. Birman ◽  
Ph. Touraine ◽  
F. Bai-Grenier ◽  
C. Dubray ◽  
T. Kaabache ◽  
...  

Abstract. To investigate whether the modulation of lactotrope cell multiplication and prolactin secretion in rat pituitary glands implicated the phosphoinositide C-kinase system, female Wistar rats were treated or not with the dopamine agonist CV 205-502 or 8 days or with estradiol cervical implants for 8 for 15 days, alone or in combination with CV 205-502 for the last 8 days. CV 205-502 treatment induced a significant reduction in plasma PRL levels and in pituitary weights, whereas estradiol treatment induced a significant increase in both parameters. CV 205-502, in association with estradiol, counteracted estradiol stimulation of PRL levels and of pituitary weights. Total C-kinase activity in controls was 29.8 ± 9.9 pmol 32phosphorus/min (N = 7, mean±sem), mainly found in the soluble fraction (84%). When administered alone, CV 205-502 induced a significant reduction (–58%, p < 0.02) in C-kinase activity in the particulate fraction with no modification in the soluble fraction. Both 8 and 15 days estradiol treatment induced a significant stimulation of total C-kinase activity, 74% and 155% respectively. When combined with estradiol, CV 205-502 significantly (p < 0.02) counteracted the estradiol increase in total C-kinase activity, which was only 45% over control values. We conclude that treatment with a dopamine agonist and estradiol, which have antagonistic effects on the pituitary, exerts an opposite regulation of C-kinase activity. Whether this may be one of the mechanisms involved in their interaction on pituitary lactotropes remains to be determined.


1983 ◽  
Vol 244 (5) ◽  
pp. E499-E504 ◽  
Author(s):  
M. J. Cronin ◽  
G. A. Myers ◽  
R. M. MacLeod ◽  
E. L. Hewlett

Pertussis toxin, a protein exotoxin produced by Bordetella pertussis, markedly reduced or eliminated the ability of dopamine or the dopamine agonist bromocriptine to inhibit prolactin release from anterior pituitary cells in vitro. Toxin-mediated reversal of the effect on dopamine agonist inhibition of prolactin release occurred with a lag of greater than 6 h, was maximal by 24 h, and persisted for at least 6 days after removal of the toxin from the medium. The toxin reduced dopamine agonist efficacy without altering potency or directly modifying the dopamine receptor (as measured by [3H]spiperone binding). The ability of dopamine to reduce cellular cyclic AMP content was also antagonized by pertussis toxin, supporting the hypothesis that reduction of cellular cyclic AMP content and inhibition of prolactin secretion may be causally related. These data demonstrated that pertussis toxin can prevent the typical inhibitory action of dopamine agonists on anterior pituitary prolactin release and suggest that this receptor-mediated inhibitory hormone system is analogous to other inhibitory receptors coupled to adenylate cyclase.


1973 ◽  
Vol 134 (4) ◽  
pp. 1103-1113 ◽  
Author(s):  
A. Betteridge ◽  
M. Wallis

The effect of insulin on the incorporation of radioactive leucine into growth hormone was investigated by using rat anterior pituitary glands incubated in vitro. A 50% stimulation over control values was observed at insulin concentrations above 2μm (280munits/ml). The effect was specific for growth hormone biosynthesis, over the range 1–5μm-insulin (140–700munits/ml). Lower more physiological concentrations had no significant effect in this system. Above 10μm (1.4 units/ml) total protein synthesis was also increased. The stimulation of growth hormone synthesis could be partially blocked by the addition of actinomycin D, suggesting that RNA synthesis was involved. Insulin was found to stimulate the rate of glucose utilization in a similar way to growth hormone synthesis. 2-Deoxyglucose and phloridzin, which both prevented insulin from stimulating glucose utilization, also prevented the effect of insulin on growth hormone synthesis. If glucose was replaced by fructose in the medium, the effect of insulin on growth hormone synthesis was decreased. We conclude that the rate of utilization of glucose may be an important step in mediating the effect of insulin on growth hormone synthesis.


1982 ◽  
Vol 94 (3) ◽  
pp. 347-NP ◽  
Author(s):  
M. J. Cronin ◽  
D. A. Keefer ◽  
C. A. Valdenegro ◽  
L. G. Dabney ◽  
R. M. MacLeod

The MtTW15 transplantable pituitary tumour grown in rats was tested in vitro for the ability of dopamine agonists to affect prolactin secretion and for the existence of dopamine receptors. Prolactin release from enzymatically dispersed cells and non-enzymatically treated tissue fragments of both the tumour and the anterior pituitary gland was determined in a cell perifusion column apparatus. Dopamine (0·1–5 μmol/l), bromocriptine (50 nmol/l) and the dopamine antagonist haloperidol (100 nmol/l) had no effect on prolactin release from the tumour cells. In contrast, dopamine (500 nmol/l) inhibited prolactin secretion from normal anterior pituitary cells in a parallel cell column and haloperidol blocked this inhibition. Although oestrogen treatment in vivo stimulated prolactin release in vitro when the tumour was removed and studied in the cell column, oestrogen had no effect on the inability of dopamine to modify the prolactin secretion. Growth hormone release from the tumour cells was not affected by dopamine. Although MtTW15 cells were refractory to dopaminergic inhibition of prolactin release, the dopamine receptors present in tumour homogenates were indistinguishable from the dopamine receptors previously defined in the normal anterior pituitary gland. The binding of the dopamine antagonist [3H]spiperone to the tumour was saturable (110 fmol/mg protein), of high affinity to one apparent class of sites (dissociation constant = 0·12 nmol/l), reversible and sensitive to guanine nucleotides. The pharmacology of the binding was defined in competition studies with a large number of agonists and antagonists. From the order of potency of these agents, a dopaminergic interaction was apparent. We conclude that the prolactin-secreting MtTW15 tumour cells appear to be completely unresponsive to dopamine or to the potent dopamine agonist bromocriptine, in spite of apparently normal dopamine receptors in the tumour.


1980 ◽  
Vol 87 (1) ◽  
pp. 95-103 ◽  
Author(s):  
G. DELITALA ◽  
T. YEO ◽  
ASHLEY GROSSMAN ◽  
N. R. HATHWAY ◽  
G. M. BESSER

The inhibitory effects of dopamine and various ergot alkaloids on prolactin secretion were studied using continuously perfused columns of dispersed rat anterior pituitary cells. Bromocriptine (5 nmol/l) and lisuride hydrogen maleate (5 nmol/l) both inhibited prolactin secretion, the effects persisting for more than 3 h after the end of the administration of the drugs. A similar although less long-lasting effect was observed with lergotrile (50 nmol/l) and the new ergoline derivative, pergolide (5 nmol/l). These effects contrasted with the rapid disappearance of the action of dopamine. The potency estimates of the ergots relative to that of dopamine were: lergotrile, 2·3; bromocriptine, 13; lisuride, 15; pergolide, 23. The dopamine-receptor blocking drugs, metoclopramide and haloperidol, antagonized the prolactin release-inhibiting activity of the compounds; bromocriptine and lisuride showed the highest resistance to this dopaminergic blockade. The results suggested that the direct effect of the ergot derivatives on dispersed pituitary cells was mediated through dopamine receptors and emphasized the long-lasting action of bromocriptine and lisuride in vitro.


1983 ◽  
Vol 97 (2) ◽  
pp. 221-228 ◽  
Author(s):  
A. M. Bentley ◽  
M. Wallis

Anterior pituitary glands from female rats were dispersed enzymically in the absence of dopamine. Dispersed cells (106–107) were layered onto columns containing Bio-Gel P-2 and were then perifused for 3 h with Dulbecco's Modified Eagle's Medium. The prolactin content of the perifusate and cell homogenates was determined by radioimmunoassay. Prolactin secretion during the third hour of perifusion increased as the loading of cells increased. However, the increase was not linear, and when secretion rate per 106 cells was calculated it was found that increased loading decreased the rate, which fell to a plateau of 1·3 ± 0·1 (s.e.m.) ng/min per 106 cells at a loading of about 8 × 106 cells from 3·8 ± 0·1 ng/min per 106 cells for a loading of 106 cells. This cell-density dependence of the rate of prolactin secretion in the perifusion system may be due to intercellular contact since the isolation of the tissue removes the influence of hypothalamic factors, while localized build up of prolactin (potentially causing direct autoregulation on the lactotroph) seems unlikely because of the continuous flow of medium.


Sign in / Sign up

Export Citation Format

Share Document