scholarly journals Effects of sodium butyrate on expression of members of the IGF-binding protein superfamily in human mammary epithelial cells

2001 ◽  
Vol 169 (1) ◽  
pp. 97-110 ◽  
Author(s):  
J Tsubaki ◽  
WK Choi ◽  
AR Ingermann ◽  
SM Twigg ◽  
HS Kim ◽  
...  

Dietary factors play an important role in both the development and prevention of human cancers, including breast carcinoma. One dietary micronutrient, sodium butyrate (NaB), is a major end product of dietary starch and fiber, produced naturally during digestion by anaerobic bacteria in the cecum and colon. NaB is a potent growth inhibitor and initiates cell differentiation for many cell types in vitro. In this study, we investigated the effects of NaB on three human mammary epithelial cells and regulation of the IGF axis, specifically, IGF-binding protein-3 (IGFBP-3), a known growth regulator in human mammary cells, and IGFBP-related protein 2 (IGFBP-rP2)/connective tissue growth factor. NaB inhibited DNA synthesis, as measured by [3H]thymidine incorporation, in estrogen-responsive (MCF-7) and estrogen-non-responsive (Hs578T) breast cancer cells, and normal human mammary epithelial cells (HMEC) to a similar degree (up to 90% inhibition at 1-10 mM concentrations). Treatment of cells with NaB induced histone hyperacetylation, suggesting that NaB exerts its biological effects, at least in part, as a histone deacetylase inhibitor in mammary epithelial cells. Treatment of Hs578T cells with NaB caused an induction of apoptotic cell death. NaB treatment resulted in increased levels of p21(Waf1/Cip1) mRNA and protein in Hs578T cells and distinct upregulation of p27(Kip1) in HMEC, suggesting that NaB activates different genes involved in cell cycle arrest, depending upon the cell type. In the same context, among the IGFBP superfamily members tested, NaB specifically upregulated the expression of IGFBP-3 and IGFBP-rP2. These two proteins are known to be involved in inhibition of mammary epithelial cell replication. Northern blot analysis showed that NaB treatment at 1-10 mM concentrations caused a dose-dependent stimulation of IGFBP-3 mRNA expression in cancerous cells and IGFBP-rP2 mRNA expression in both cancerous and non-cancerous cells. Protein data from Western ligand blot and immunoblot analyses demonstrated parallel results. In summary, we have demonstrated that NaB (i) uniformly suppresses DNA synthesis in both cancerous and non-cancerous mammary cells, and (ii) upregulates IGFBP-3 and IGFBP-rP2 mRNA and protein levels in cancerous and non-cancerous mammary cells. These results provide the first demonstration that butyrate regulates the IGFBP system in the human mammary system.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Andrea D. Belalcázar ◽  
John G. Ball ◽  
Leslie M. Frost ◽  
Monica A. Valentovic ◽  
John Wilkinson

The transsulfuration pathway, through which homocysteine from the methionine cycle provides sulfur for cystathionine formation, which may subsequently be used for glutathione synthesis, has not heretofore been identified as active in mammary cells. Primary human mammary epithelial cells (HMEC’s) were labeled with S35-methionine for 24 hours following pretreatment with a vehicle control, the cysteine biosynthesis inhibitor propargylglycine or the gamma-glutamylcysteine synthesis inhibitor buthionine sulfoximine. Cell lysates were prepared and reacted with glutathione-S-transferase and the fluorescent labeling compound monochlorobimane to form a fluorescent glutathione-bimane conjugate. Comparison of fluorographic and autoradiographic images indicated that glutathione had incorporated S35-methionine demonstrating that functional transsulfuration occurs in mammary cells. Pathway inhibitors reduced incorporation by roughly 80%. Measurement of glutathione production in HMEC’s treated with and without hydrogen peroxide and/or pathway inhibitors indicates that the transsulfuration pathway plays a significant role in providing cysteine for glutathione production both normally and under conditions of oxidant stress.


Oncogene ◽  
1999 ◽  
Vol 18 (13) ◽  
pp. 2169-2180 ◽  
Author(s):  
James Garbe ◽  
Michelle Wong ◽  
Don Wigington ◽  
Paul Yaswen ◽  
Martha R Stampfer

Sign in / Sign up

Export Citation Format

Share Document