cancerous cells
Recently Published Documents


TOTAL DOCUMENTS

733
(FIVE YEARS 374)

H-INDEX

36
(FIVE YEARS 10)

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 270
Author(s):  
Konstantin Polev ◽  
Diana V. Kolygina ◽  
Kristiana Kandere-Grzybowska ◽  
Bartosz A. Grzybowski

Lysosomes—that is, acidic organelles known for degradation/recycling—move through the cytoplasm alternating between bursts of active transport and short, diffusive motions or even pauses. While their mobility is essential for lysosomes’ fusogenic and non-fusogenic interactions with target organelles, their movements have not been characterized in adequate detail. Here, large-scale statistical analysis of lysosomal movement trajectories reveals that lysosome trajectories in all examined cell types—both cancer and noncancerous ones—are superdiffusive and characterized by heavy-tailed distributions of run and flight lengths. Consideration of Akaike weights for various potential models (lognormal, power law, truncated power law, stretched exponential, and exponential) indicates that the experimental data are best described by the lognormal distribution, which, in turn, can be related to one of the space-search strategies particularly effective when “thorough” search needs to balance search for rare target(s) (organelles). In addition, automated, wavelet-based analysis allows for co-tracking the motions of lysosomes and the cargos they carry—particularly the nanoparticle aggregates known to cause selective lysosome disruption in cancerous cells. The methods we describe here could help study nanoparticle assemblies, viruses, and other objects transported inside various vesicle types, as well as coordinated movements of organelles/particles in the cytoplasm. Custom-written code that includes integrated workflow for our analyses is made available for academic use.


Photochem ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 58-68
Author(s):  
Anthony T. Rice ◽  
Glenn P. A. Yap ◽  
Joel Rosenthal

Photodynamic therapy (PDT) is a promising treatment option that ablates cancerous cells and tumors via photoinduced sensitization of singlet oxygen. Over the last few decades, much work has been devoted to the development of new photochemotherapeutic agents for PDT. A wide variety of macrocyclic tetrapyrrole based photosensitizers have been designed, synthesized and characterized as PDT agents. Many of these complexes have a variety of issues that pose a barrier to their use in humans, including biocompatibility, inherent toxicity, and synthetic hurdles. We have developed a non-traditional, non-cyclic, and non-aromatic tetrapyrrole ligand scaffold, called the biladiene (DMBil1), as an alternative to these traditional photosensitizer complexes. Upon insertion of a heavy atom such as Pd2+ center, Pd[DMBil1] generates singlet oxygen in substantial yields (ΦΔ = 0.54, λexc = 500 nm) when irradiated with visible light. To extend the absorption profile for Pd[DMBil1] deeper into the phototherapeutic window, the tetrapyrrole was conjugated with alkynyl phenyl groups at the 2- and 18-positions (Pd[DMBil2-PE]) resulting in a significant redshift while also increasing singlet oxygen generation (ΦΔ = 0.59, 600 nm). To further modify the dialkynyl-biladiene scaffold, we conjugated a 1,8-diethynylanthracene with to the Pd[DMBil1] tetrapyrrole in order to further extend the compound’s π-conjugation in a cyclic loop that spans the entire tetrapyrrole unit. This new compound (Pd[DMBil2-P61]) is structurally reminiscent of the P61 Black Widow aircraft and absorbs light into the phototherapeutic window (600–900 nm). In addition to detailing the solid-state structure and steady-state spectroscopic properties for this new biladiene, photochemical sensitization studies demonstrated that Pd[DMBil2-P61] can sensitize the formation of 1O2 with quantum yields of ΦΔ = 0.84 upon irradiation with light λ = 600 nm. These results distinguish the Pd[DMBil2-P61] platform as the most efficient biladiene-based singlet oxygen photosensitizer developed to date. When taken together, the improved absorption in the phototherapeutic window and high singlet oxygen sensitization efficiency of Pd[DMBil2-P61] mark this compound as a promising candidate for future study as an agent of photodynamic cancer therapy.


2022 ◽  
Vol 11 ◽  
Author(s):  
Farbod Shojaei ◽  
Bob Goodenow ◽  
Gloria Lee ◽  
Fairooz Kabbinavar ◽  
Mireille Gillings

HBI-8000 is a small molecule inhibitor of class I HDACs and has been approved for the treatment of PTCL, ATL and, in combination with exemestane, in a subpopulation of breast cancer. Given the roles of HDACs in normal and cancerous cells, there are currently multiple clinical trials, by HUYABIO International, to test the efficacy of HBI-8000 in monotherapy or in combination settings in leukemias and in solid tumors. The current review is focused on the applications of HDACi HBI-8000 in cancer therapy and its potential in combination with DDR agents.


ACS Omega ◽  
2022 ◽  
Author(s):  
Kaushik Bera ◽  
Samarpan Maiti ◽  
Mritunjoy Maity ◽  
Chitra Mandal ◽  
Nakul C. Maiti

2022 ◽  
Vol 23 (1) ◽  
pp. 573
Author(s):  
Katarzyna Balon ◽  
Adam Sheriff ◽  
Joanna Jacków ◽  
Łukasz Łaczmański

Cancer is a devastating condition characterised by the uncontrolled division of cells with many forms remaining resistant to current treatment. A hallmark of cancer is the gradual accumulation of somatic mutations which drive tumorigenesis in cancerous cells, creating a mutation landscape distinctive to a cancer type, an individual patient or even a single tumour lesion. Gene editing with CRISPR/Cas9-based tools now enables the precise and permanent targeting of mutations and offers an opportunity to harness this technology to target oncogenic mutations. However, the development of safe and effective gene editing therapies for cancer relies on careful design to spare normal cells and avoid introducing other mutations. This article aims to describe recent advancements in cancer-selective treatments based on the CRISPR/Cas9 system, especially focusing on strategies for targeted delivery of the CRISPR/Cas9 machinery to affected cells, controlling Cas9 expression in tissues of interest and disrupting cancer-specific genes to result in selective death of malignant cells.


2022 ◽  
Vol 23 (1) ◽  
pp. 517
Author(s):  
Soee Kim ◽  
Min Kim ◽  
Jung-Suk Sung

Toluene diisocyanate (TDI), a major intermediate agent used in the manufacturing industry, causes respiratory symptoms when exposed to the human body. In this study, we aimed to determine the molecular mechanism of TDI toxicity. To investigate the impact of TDI exposure on global gene expression, we performed transcriptomic analysis of human bronchial epithelial cells (BEAS-2B) after TDI treatment. Differentially expressed genes (DEGs) were sorted and used for clustering and network analysis. Among DEGs, dual-specificity phosphatase 6 (DUSP6) was one of the genes significantly changed by TDI exposure. To verify the expression level of DUSP6 and its effect on lung cells, the mRNA and protein levels of DUSP6 were analyzed. Our results showed that DUSP6 was dose-dependently upregulated by TDI treatment. Thereby, the phosphorylation of ERK1/2, one of the direct inhibitory targets of DUSP6, was decreased. TDI exposure also increased the mRNA level of p53 along with its protein and activity which trans-activates DUSP6. Since TRPA1 is known as a signal integrator activated by TDI, we analyzed the relevance of TRPA1 receptor in DUSP6 regulation. Our data revealed that up-regulation of DUSP6 mediated by TDI was blocked by a specific antagonist against TRPA1. TDI exposure attenuated the apoptotic response, which suggests that it promotes the survival of cancerous cells. In conclusion, our results suggest that TDI induces DUSP6 and p53, but attenuates ERK1/2 activity through TRPA1 receptor activation, leading to cytotoxicity.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 99
Author(s):  
Ya-Na Wu ◽  
Li-Xing Yang ◽  
Pei-Wen Wang ◽  
Filip Braet ◽  
Dar-Bin Shieh

Accumulated studies indicate that zero-valent iron (ZVI) nanoparticles demonstrate endogenous cancer-selective cytotoxicity, without any external electric field, lights, or energy, while sparing healthy non-cancerous cells in vitro and in vivo. The anti-cancer activity of ZVI-based nanoparticles was anti-proportional to the oxidative status of the materials, which indicates that the elemental iron is crucial for the observed cancer selectivity. In this thematic article, distinctive endogenous anti-cancer mechanisms of ZVI-related nanomaterials at the cellular and molecular levels are reviewed, including the related gene modulating profile in vitro and in vivo. From a material science perspective, the underlying mechanisms are also analyzed. In summary, ZVI-based nanomaterials demonstrated prominent potential in precision medicine to modulate both programmed cell death of cancer cells, as well as the tumor microenvironment. We believe that this will inspire advanced anti-cancer therapy in the future.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 38
Author(s):  
Bartosz Wilczyński ◽  
Alicja Dąbrowska ◽  
Jolanta Saczko ◽  
Julita Kulbacka

Nowadays, one of medicine’s main and most challenging aims is finding effective ways to treat cancer. Unfortunately, although there are numerous anti-cancerous drugs, such as cisplatin, more and more cancerous cells create drug resistance. Thus, it is equally important to find new medicines and research the drug resistance phenomenon and possibilities to avoid this mechanism. Ion channels, including chloride channels, play an important role in the drug resistance phenomenon. Our article focuses on the chloride channels, especially the volume-regulated channels (VRAC) and CLC chloride channels family. VRAC induces multidrug resistance (MDR) by causing apoptosis connected with apoptotic volume decrease (AVD) and VRAC are responsible for the transport of anti-cancerous drugs such as cisplatin. VRACs are a group of heterogenic complexes made from leucine-rich repetition with 8A (LRRC8A) and a subunit LRRC8B-E responsible for the properties. There are probably other subunits, which can create those channels, for example, TTYH1 and TTYH2. It is also known that the ClC family is involved in creating MDR in mainly two mechanisms—by changing the cell metabolism or acidification of the cell. The most researched chloride channel from this family is the CLC-3 channel. However, other channels are playing an important role in inducing MDR as well. In this paper, we review the role of chloride channels in MDR and establish the role of the channels in the MDR phenomenon.


Sign in / Sign up

Export Citation Format

Share Document