STUs for cable-stayed and suspension bridges

Keyword(s):  
2006 ◽  
Vol 11 (3) ◽  
pp. 293-318 ◽  
Author(s):  
M. Zribi ◽  
N. B. Almutairi ◽  
M. Abdel-Rohman

The flexibility and low damping of the long span suspended cables in suspension bridges makes them prone to vibrations due to wind and moving loads which affect the dynamic responses of the suspended cables and the bridge deck. This paper investigates the control of vibrations of a suspension bridge due to a vertical load moving on the bridge deck with a constant speed. A vertical cable between the bridge deck and the suspended cables is used to install a hydraulic actuator able to generate an active control force on the bridge deck. Two control schemes are proposed to generate the control force needed to reduce the vertical vibrations in the suspended cables and in the bridge deck. The proposed controllers, whose design is based on Lyapunov theory, guarantee the asymptotic stability of the system. The MATLAB software is used to simulate the performance of the controlled system. The simulation results indicate that the proposed controllers work well. In addition, the performance of the system with the proposed controllers is compared to the performance of the system controlled with a velocity feedback controller.


2004 ◽  
Vol 88 (8) ◽  
pp. 88-93
Author(s):  
Elena Dragomirescu ◽  
Toshio Miyata ◽  
Hitoshi Yamada ◽  
Hiroshi Katsuchi

2001 ◽  
Vol 84 (5) ◽  
pp. 8-15
Author(s):  
Liang Xu ◽  
Jingjun Guo ◽  
Jianjing Jiang

MLN ◽  
2020 ◽  
Vol 135 (5) ◽  
pp. 1258-1282
Author(s):  
Lucy Alford
Keyword(s):  

2013 ◽  
Vol 405-408 ◽  
pp. 1616-1622
Author(s):  
Guo Hui Cao ◽  
Jia Xing Hu ◽  
Kai Zhang ◽  
Min He

In order to research on mechanical properties of flexible suspension bridges, a geometric nonlinear analysis method was used to simulate on the experimental results, and carried on static loading test finally. In the loading test process, the deformations were measured in critical section of the suspension bridge, and displacement values of measured are compared with simulation values of the finite element simulation. Meanwhile the deformations of the main cable sag are observed under classification loading, the results show that the main cable sag increment is basically linear relationship with the increment of mid-span loading and tension from 3L/8 and 5L/8 to L/2 section, the main cable that increasing unit sag required mid-span loads and tension are gradually reduce in near L/4 and 3L/4 sections and gradually increase in near L/8 and 7L/8 sections and almost equal in near L/2, 3L/8 and 5L/8 sections. From the experimental results, the flexible suspension bridge possess good mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document