fractional damping
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 38)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 2 (4) ◽  
pp. 956-975
Author(s):  
Marcel S. Prem ◽  
Michael Klanner ◽  
Katrin Ellermann

In order to analyze the dynamics of a structural problem accurately, a precise model of the structure, including an appropriate material description, is required. An important step within the modeling process is the correct determination of the model input parameters, e.g., loading conditions or material parameters. An accurate description of the damping characteristics is a complicated task, since many different effects have to be considered. An efficient approach to model the material damping is the introduction of fractional derivatives in the constitutive relations of the material, since only a small number of parameters is required to represent the real damping behavior. In this paper, a novel method to determine the damping parameters of viscoelastic materials described by the so-called fractional Zener material model is proposed. The damping parameters are estimated by matching the Frequency Response Functions (FRF) of a virtual model, describing a beam-like structure, with experimental vibration data. Since this process is generally time-consuming, a surrogate modeling technique, named Polynomial Chaos Expansion (PCE), is combined with a semi-analytical computational technique, called the Numerical Assembly Technique (NAT), to reduce the computational cost. The presented approach is applied to an artificial material with well defined parameters to show the accuracy and efficiency of the method. Additionally, vibration measurements are used to estimate the damping parameters of an aluminium rotor with low material damping, which can also be described by the fractional damping model.


2021 ◽  
Author(s):  
Sümeyye Sınır ◽  
Bengi Yıldız ◽  
B. Gültekin Sınır

Because of many real problems are better characterized using fractional-order models, fractional calculus has recently become an intensively developing area of calculus not only among mathematicians but also among physicists and engineers as well. Fractional oscillator and fractional damped structure have attracted the attention of researchers in the field of mechanical and civil engineering [1-6]. This study is dedicated mainly a pendulum with fractional viscous damping. The mathematic model of pendulum is a cubic nonlinear equation governing the oscillations of systems having a single degree of freedom, via Riemann-Liouville fractional derivative. The method of multiple scales is performed to solve the equation by assigning the nonlinear and damping terms to the ε-order. Finally, the effects of the coefficient of a fractional damping term on the approximate solution are observed.


2021 ◽  
Author(s):  
Qiubao Wang ◽  
Hao Wu ◽  
Yuejuan Yang

Abstract This paper proposes the stiffness nonlinearities and asymmetric SD (smooth and discontinuous) oscillators under time-delay feedback control with a fractional damping. With the effect of displacement and velocity feedback, the oscillator is adjusted to the desired vibration state and then the stochastic resonance (SR) is achieved. This article discusses the contribution of various system parameters and time-delay feedback to SR, especially which induced by fractional damping. It should be noted that this paper provides effective guidance for fault diagnosis and weak signal detection, energy harvesting, vibration isolation and vibration reduction.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yunlong Li ◽  
Zhinong Li ◽  
Dong Wang ◽  
Zhike Peng

PurposeThe purpose of this paper is to discuss the asymptotic models of different parts with a pitting fault in rolling bearings.Design/methodology/approachFor rolling bearings with a pitting fault, the displacement deviation between raceways and rolling elements is usually considered to vary instantaneously. However, the deviation should change gradually. Based on this shortcoming, the variation rule and calculation method of the displacement deviation are explored. Asymptotic models of different parts with a pitting fault are discussed, respectively. Besides, rolling bearing systems have prominent fractional characteristics unconsidered in the traditional models. Therefore, fractional calculus is introduced into the modeling of rolling bearings. New dynamic asymptotic models of different parts with a pitting fault are proposed based on fractional damping. The numerical simulation is performed based on the proposed model, and the dynamic characteristics are analyzed through the bifurcation diagrams, trajectory diagrams and frequency spectrograms.FindingsCompared with the model based on integral calculus, the proposed model can better reflect the periodic characteristics and fault characteristics of rolling bearings. Finally, the proposed model is verified by the experiment. The dynamic characteristics of rolling bearings at different rotating speeds are analyzed. The experimental results are consistent with the simulation results. Therefore, the proposed model is effective.Originality/value(1) The above models are idealized, i.e. the local pitting fault is treated as a rectangle. When a component comes into contact with the fault, the displacement deviation between the component and the fault component immediately releases if the component enters the fault area and restores if the component leaves. However, the displacement deviation should change gradually. Only when the component touches the fault bottom, the displacement deviation reaches the maximum. (2) Due to the material's memory and fluid viscoelasticity, rolling bearing systems exhibit significant fractional characteristics. However, the above models are all proposed based on integral calculus. Integral calculus has some local characteristics and is not suitable for describing historical dependent processes. Fractional calculus can better describe the essential characteristics of the system.


Sign in / Sign up

Export Citation Format

Share Document