The study of Fermilab long-baseline neutrino fluxes and NA61/SHINE (CERN) 60 GeV pion incident data

2021 ◽  
Author(s):  
Nilay Bostan
2016 ◽  
Vol 273-275 ◽  
pp. 2681-2683
Author(s):  
M. Calviani ◽  
S. di Luise ◽  
V. Galymov ◽  
P. Velten

2005 ◽  
Vol 13 ◽  
pp. 18-23 ◽  
Author(s):  
A. Melatos

AbstractRecent calculations of the neutrino fluxes and spectra from pulsar magnetospheres and wind nebulae are reviewed. The neutrinos, produced in pp and pγ collisions via pion decays, are a signature of TeV ions accelerated electrostatically in the magnetosphere, in the wind termination shock (Fermi), or in the wind neutral sheet (wave surfing and/or reconnection). The fluxes and spectra are related to the energy and density of the accelerated ion beam and the densities of the target species, thereby constraining ion-loaded pulsar wind models originally developed to explain the variable wisps in pulsar-driven supernova remnants. The neutrino signal may be detectable by km2 telescopes (e.g. IceCube) and is correlated with TeV γ-ray emission. Related sources are also reviewed, such as early-phase post-supernova pulsar winds, pulsar-driven γ-ray-burst afterglows, and accreting neutron stars. The possibility of long baseline oscillation experiments, to search for fine splitting of neutrino mass eigenstates and non-radiative neutrino decays, is noted.


2018 ◽  
pp. 51-54
Author(s):  
I. E. Arsaev ◽  
Yu. V. Vekshin ◽  
A. I. Lapshin ◽  
V. V. Mardyshkin ◽  
M. V. Sargsyan ◽  
...  

2013 ◽  
Vol 34 (7) ◽  
pp. 1589-1595
Author(s):  
Jing Wang ◽  
Mao-sheng Xiang ◽  
Li-deng Wei ◽  
Hai-liang Wang ◽  
Xi-rui Sun ◽  
...  

2017 ◽  
Vol 13 (S336) ◽  
pp. 201-206 ◽  
Author(s):  
Luca Moscadelli ◽  
Alberto Sanna ◽  
Ciriaco Goddi

AbstractImaging the inner few 1000 AU around massive forming stars, at typical distances of several kpc, requires angular resolutions of better than 0″.1. Very Long Baseline Interferometry (VLBI) observations of interstellar molecular masers probe scales as small as a few AU, whereas (new-generation) centimeter and millimeter interferometers allow us to map scales of the order of a few 100 AU. Combining these informations all together, it presently provides the most powerful technique to trace the complex gas motions in the proto-stellar environment. In this work, we review a few compelling examples of this technique and summarize our findings.


Sign in / Sign up

Export Citation Format

Share Document