radio interferometer
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 26)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
pp. 37-50
Author(s):  
Vladimir Balandin ◽  
Vladimir Balandin ◽  
Andrey K. Lomunov ◽  
Vladimir Parkhachev ◽  
Tatiana Yuzhnina

2021 ◽  
Author(s):  
Ming H Xu ◽  
Tuomas Savolainen ◽  
Sergei Bolotin ◽  
Simone Bernhart ◽  
Christian Plötz ◽  
...  

2021 ◽  
Vol 65 (7) ◽  
pp. 552-568
Author(s):  
M. A. Shchurov ◽  
I. E. Val’tts ◽  
N. N. Shakhvorostova
Keyword(s):  

Author(s):  
Justin Kasper ◽  
Joseph Lazio ◽  
Andrew Romero-Wolf ◽  
James Lux ◽  
Tim Neilsen

2021 ◽  
Author(s):  
Alexander Hegedus ◽  
Ward Manchester ◽  
Justin Kasper ◽  
Joseph Lazio ◽  
Andrew Romero-Wolf

<p>The Earth’s Ionosphere limits radio measurements on its surface, blocking out any radiation below 10 MHz. Valuable insight into many astrophysical processes could be gained by having a radio interferometer in space to image the low frequency window, which has never been achieved. One application for such a system is observing type II bursts that track solar energetic particle acceleration occurring at Coronal Mass Ejection (CME)-driven shocks. This is one of the primary science targets for SunRISE, a 6 CubeSat interferometer to circle the Earth in a GEO graveyard orbit. SunRISE is a NASA Heliophysics Mission of Opportunity that began Phase B (Formulation) in June 2020, and plans to launch for a 12-month mission in mid-2023. In this work we present an update to the data processing and science analysis pipeline for SunRISE and evaluate its performance in localizing type II bursts around a simulated CME.</p><p>To create realistic virtual type II input data, we employ a 2-temperature MHD simulation of the May 13th 2005 CME event, and superimpose realistic radio emission models on the CME-driven shock front, and propagate the signal through the simulated array. Data cuts based on different plasma parameter thresholds (e.g. de Hoffman-Teller velocity and angle between shock normal and the upstream magnetic field) are tested to get the best match to the true recorded emission.  This model type II emission is then fed to the SunRISE data processing pipeline to ensure that the array can localize the emission. We include realistic thermal noise dominated by the galactic background at these low frequencies, as well as new sources of phase noise from positional uncertainty of each spacecraft. We test simulated trajectories of SunRISE and image what the array recovers, comparing it to the virtual input, finding that SunRISE can resolve the source of type II emission to within its prescribed goal of 1/3 the CME width. This shows that SunRISE will significantly advance the scientific community’s understanding of type II burst generation, and consequently, acceleration of solar energetic particles at CMEs.  This unique combination of SunRISE observations and MHD recreations of space weather events will allow an unprecedented look into the plasma parameters important for these processes. </p>


2021 ◽  
Author(s):  
Hervé Lamy

<p>BRAMS (Belgian RAdio Meteor Stations) is a Belgian radio network using forward scatter observations to detect and characterize meteoroids. A dedicated transmitter located in south of Belgium emits a CW signal with no modulation at a frequency of 49.97 MHz and with a power of 130 W. The network comprises currently 35 similar receiving stations located in Belgium and neighboring countries. They use Yagi antennas with a wide sensitivity pattern which therefore provide no information about the directivity of the meteor echoes. One of these stations is however a radio interferometer using the classical Jones configuration and is able to retrieve the direction of the meteor echoes.</p><p>We discuss here a general method to retrieve meteoroid trajectories based solely on time delays measured between meteor echoes recorded at multiple receiving stations. It is based on solving at least 6 non-linear equations to solve for the position of one specular reflection point (3 unknowns) and the 3 components of the speed. This method has also been described recently in Mazur et al (2020) and applied to CMOR data. However, specificities of the CMOR configuration has allowed simplifications that cannot be made with the BRAMS network. In order to maximize the number of meteoroid trajectories with at least 6 stations detecting meteor echoes, a number of additional stations geographically close to each other have been installed in the Limburg province in 2020. Another method to retrieve meteoroid trajectories using data from the radio interferometer and from 3 other stations is also presented.</p><p>We show preliminary results from both methods using also complementary data from the optical CAMS Benelux network.  The CAMS trajectories are used to select specific meteor echoes in the BRAMS data. The time delays between them are computed and used to solve the set of non-linear equations to retrieve the meteoroid trajectory and speed, which are then compared to the CAMS values. This allows us to assess the accuracy of both methods.</p><p>Finally we simulate the impact of using additional information, not currently available but that might become in a near future. This includes data from a monostatic system (a radar nearby our BRAMS transmitter is currently built), from a second radio interferometer (to be located in Limburg and/or near the transmitter), or the total range traveled by the radio wave if a coded CW transmitter such as in Vierinen et al (2016) is used.</p>


Author(s):  
A. T. Sutinjo ◽  
M. Sokolowski ◽  
M. Kovaleva ◽  
D. C. X. Ung ◽  
J. W. Broderick ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document