scholarly journals Studi Pengaruh Fraksi Coated Fuel Particle pada Desain Pebble Bed Reactor 40 MWt Berbahan Bakar Uranium

2021 ◽  
Vol 23 (1) ◽  
pp. 1
Author(s):  
Dwi Irwanto ◽  
Nining Yuningsih

Coated Fuel Particle (CFP) adalah tipe elemen bakar mikro berdiameter lebih kecil dari 1 mm, yang di dalamnya terdapat material fisil yang dilapisi oleh beberapa lapisan karbon. Pebble Bed Reactor (PBR) menggunakan konsep CFP untuk elemen bakarnya. CFP dimasukan ke dalam bola elemen bakar berukuran 6 cm dan disebar di dalam zona elemen bakar. Tujuan penelitian ini adalah untuk mempelajari pengaruh dari fraksi CFP terhadap beberapa parameter neutronik penting seperti faktor multiplikasi efektif, spektrum energi neutron, perubahan densitas material fisil dan fertil, serta tingkat utilisasi material fisil. Analisa dilakukan untuk pada sistem PBR berdaya 40 MWt dengan menggunakan kode Monte Carlo MVP/MVP-BURN, dengan fraksi CFP yang dianalisa berkisar antara 5-60%. Dari penelitian ini didapatkan bahwa fraksi CFP sebesar 10% memberikan nilai optimal untuk beberapa parameter neutronik terkait dan dapat dijadikan acuan untuk desain Pebble Bed Reactor berdaya 40 MWt dengan elemen bakar uranium.

2021 ◽  
Vol 7 (1) ◽  
pp. 102
Author(s):  
Dwi Irwanto ◽  
Nining Yuningsih

High-Temperature Gas Reactor (HTGR) is a type of reactor that continues to be developed because of its advantages in terms of economic aspects, proliferation resistance, and safety aspects. One of the safety aspect improvements is due to the use of the Coated Fuel Particle (CFP). A coated fuel particle is a fuel with a diameter smaller than 1 mm and is protected by several carbon layers. In the Pebble Bed Reactor (PBR) type of HTGR design, the CFP is placed in a 6 cm fuel ball. How much CFP is put into the fuel ball will determine the neutronic characteristics of the reactor. In this study, the effect of the amount of CFP in the fuel ball on the 25 MWt PBR design using Thorium fuel and its impact on several important neutronic aspects, such as the effective multiplication factor, the amount of fuel enrichment, the utilization of fissile material, and the density of the fissile material formed. The calculation was performed by the Monte Carlo MVP / MVP-BURN code. This study found that the coated fuel particle fraction of 15% was the optimum value for the studied neutronic parameters.


2005 ◽  
Vol 149 (2) ◽  
pp. 131-137 ◽  
Author(s):  
Üner Çolak ◽  
Volkan Seker

2012 ◽  
Vol 177 (2) ◽  
pp. 147-156 ◽  
Author(s):  
Song Hyun Kim ◽  
Hong-Chul Kim ◽  
Jong Kyung Kim ◽  
Jea Man Noh

2020 ◽  
Vol 1689 ◽  
pp. 012026
Author(s):  
A E Kruglikov ◽  
M V Shchurovskaya ◽  
Yu N Volkov ◽  
V A Nevinitsa ◽  
P A Fomichenko ◽  
...  

2015 ◽  
Vol 77 ◽  
pp. 223-230 ◽  
Author(s):  
Ville Rintala ◽  
Heikki Suikkanen ◽  
Jaakko Leppänen ◽  
Riitta Kyrki-Rajamäki

Author(s):  
Jikui Li ◽  
Liangzhi Cao ◽  
Tiejun Zu ◽  
HongChun Wu ◽  
Qingming He

Fully ceramic micro-encapsulated (FCM) fuels generate double heterogeneity (DH) challenging greatly for classical resonance self-shielding calculation method. New methodologies have been proposed and verified in this research. The target of this study is to provide homogeneous multi-group cross sections reflecting the effect of DH. Embedded Self-Shielding Method (ESSM) [1] was selected to perform resonance self-shielding calculation. Therefore, Monte Carlo code MVP [2] which is capable of well modeling the stochastic dispersed tri-structural isotropic (TRISO) coated fuel particle throughout carbide matrix and method of characteristics (MOC) were chosen to develop the heterogeneous resonance integral (RI) tables for DH problems. Benchmark problems from reference [3] were provided to verify the new methodologies. The results show that ESSM with RI tables from MVP and MOC could well address the resonance calculation for DH problems.


Kerntechnik ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. 643-647 ◽  
Author(s):  
T. Setiadipura ◽  
D. Irwanto ◽  
Zuhair

Sign in / Sign up

Export Citation Format

Share Document