fuel management
Recently Published Documents


TOTAL DOCUMENTS

555
(FIVE YEARS 78)

H-INDEX

31
(FIVE YEARS 3)

2022 ◽  
Vol 166 ◽  
pp. 108807
Author(s):  
Kun Zhuang ◽  
Yong Zheng ◽  
Fei Xu ◽  
Ting Li ◽  
Wei Lu ◽  
...  

Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Ashley Grupenhoff ◽  
Nicole Molinari

Abstract Background Shrub-dominated ecosystems in California are widespread and provide invaluable ecosystem services to surrounding human-dominated communities. Yet shrublands, especially those at the wildland-urban interface, are at risk of degradation due to increasing wildfire frequency. Strategically placed fuel breaks are an important fuel management technique for reducing fire risk to neighboring communities and natural landscapes. Fuel breaks in shrub-dominated ecosystems are typically linear features where woody biomass is reduced, thereby providing fire suppression opportunities that limit fire spread. While fuel breaks are important for tactical response to fire, they can also affect the composition and structure of shrubland habitats. To understand the ecological changes resulting from fuel treatments in southern California chaparral, we measured vegetation change associated with fuel management techniques on a recently created fuel break established around the Lake Morena community on the Cleveland National Forest. The area was initially treated with cut and pile burning, then treated with herbicide, and 2 years later was subjected to short-term grazing by 1200 goats. The purpose of this study is to (1) evaluate the compositional and structural differences associated with fuel break creation and (2) quantify compositional shifts in herbaceous and woody vegetation caused by short-duration goat grazing as a method of fuel break maintenance. Results Plots on the fuel break and in untreated adjacent chaparral exhibited significantly different species assemblages. Total herbaceous cover (both native and non-native) was 92 times greater on the fuel break than in adjacent chaparral-dominated wildlands, and native shrub cover was 55.3 times greater in untreated adjacent chaparral than on the fuel break. Goats had a significant impact on reducing native and non-native herbaceous cover (87% reduction in cover, 92% reduction in height), but were ineffective at reducing the cover and height of most woody species such as Adenostoma fasciculatum, Eriogonum fasciculatum, Quercus berberidifolia, and Artemisia tridentata. Conclusion Initial fuel break creation was effective at reducing native woody cover and height, simultaneously giving rise to an abundance and diversity of native and non-native herbaceous species. Targeted goat grazing was successful at reducing herbaceous biomass but was ineffective at reducing woody biomass which is often one of the most important goals for fuel management in chaparral ecosystems. In areas where control of woody biomass is the primary objective, land managers should consider grazing duration and plant species composition when contemplating goats as a tool for fuel break maintenance.


Land ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1104
Author(s):  
Fermín Alcasena ◽  
Marcos Rodrigues ◽  
Pere Gelabert ◽  
Alan Ager ◽  
Michele Salis ◽  
...  

Despite the need for preserving the carbon pools in fire-prone southern European landscapes, emission reductions from wildfire risk mitigation are still poorly understood. In this study, we estimated expected carbon emissions and carbon credits from fuel management projects ongoing in Catalonia (Spain). The planning areas encompass about 1000 km2 and represent diverse fire regimes and Mediterranean forest ecosystems. We first modeled the burn probability assuming extreme weather conditions and historical fire ignition patterns. Stand-level wildfire exposure was then coupled with fuel consumption estimates to assess expected carbon emissions. Finally, we estimated treatment cost-efficiency and carbon credits for each fuel management plan. Landscape-scale average emissions ranged between 0.003 and 0.070 T CO2 year−1 ha−1. Fuel treatments in high emission hotspots attained reductions beyond 0.06 T CO2 year−1 per treated ha. Thus, implementing carbon credits could potentially finance up to 14% of the treatment implementation costs in high emission areas. We discuss how stand conditions, fire regimes, and treatment costs determine the treatment cost-efficiency and long-term carbon-sink capacity. Our work may serve as a preliminary step for developing a carbon-credit market and subsidizing wildfire risk management programs in low-revenue Mediterranean forest systems prone to extreme wildfires.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1326
Author(s):  
Ibtisam Al Abri ◽  
Kelly Grogan

The United States has experienced an even longer and more intense wildfire season than normal in recent years, largely resulting from drought conditions and a buildup of flammable vegetation. The derived stochastic dynamic model in this study was utilized to evaluate the interaction of wildfire risk mitigation policies for two adjacent landowners under various scenarios of forest benefits while accounting for full awareness of fire externalities. This study also evaluated the effectiveness of cost-share programs and fuel stock regulation and investigated under which scenarios of forest management interests the implementation of these policies encourages risk mitigation behaviors and yields larger reductions in social costs. The findings revealed that social costs significantly reduced after the implementation of cost-share programs and fuel stock regulation. Market-oriented adjacent landowners were more responsive to policy instruments compared to other types of neighboring landowners, and their responsiveness was greater for fuel stock regulation policies than for cost-share programs. Policymakers may introduce extra financial incentives or more rigorous fuel stock regulations to induce nonmarket-oriented landowners to undertake increased fuel management activities.


Sign in / Sign up

Export Citation Format

Share Document