Research on a complete model of cosmological evolution a classical scalar field with a Higgs Potential. III. Features of flows of phase trajectories

2021 ◽  
Vol 64 (10) ◽  
pp. 26-31
Author(s):  
Yu.G. Ignat’ev ◽  
◽  
A.R. Samigullina
Author(s):  
Yu.G. Ignat’ev ◽  
◽  
A.R. Samigullina ◽  

A study and computer simulation of a complete model of the cosmological evolution of a classical scalar field with a Higgs potential is carried out without the assumption that the Hubble constant is nonnegative. It is shown that in most cases of initial conditions the cosmological model passes from the expansion stage to the compression stage. Thus, cosmological models based on the classical Higgs field are unstable with respect to finite perturbations.


Author(s):  
Yu.G. Ignat’ev ◽  
◽  
A.R. Samigullina ◽  

A study and computer simulation of a complete model of the cosmological evolution of a classical scalar field with a Higgs potential is carried out without the assumption that the Hubble constant is nonnegative. A qualitative analysis of the corresponding dynamical system and a classification of the Einstein - Higgs hmpersurfaces, the topology of which determines the global properties of the phase trajectories of the cosmological model, are carried out.


2004 ◽  
Vol 36 (7) ◽  
pp. 1671-1678 ◽  
Author(s):  
Sergey V. Sushkov ◽  
Sung-Won Kim

Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 32
Author(s):  
Vasilis K. Oikonomou

Neutron stars are perfect candidates to investigate the effects of a modified gravity theory, since the curvature effects are significant and more importantly, potentially testable. In most cases studied in the literature in the context of massive scalar-tensor theories, inflationary models were examined. The most important of scalar-tensor models is the Higgs model, which, depending on the values of the scalar field, can be approximated by different scalar potentials, one of which is the inflationary. Since it is not certain how large the values of the scalar field will be at the near vicinity and inside a neutron star, in this work we will answer the question, which potential form of the Higgs model is more appropriate in order for it to describe consistently a static neutron star. As we will show numerically, the non-inflationary Higgs potential, which is valid for certain values of the scalar field in the Jordan frame, leads to extremely large maximum neutron star masses; however, the model is not self-consistent, because the scalar field approximation used for the derivation of the potential, is violated both at the center and at the surface of the star. These results shows the uniqueness of the inflationary Higgs potential, since it is the only approximation for the Higgs model, that provides self-consistent results.


Sign in / Sign up

Export Citation Format

Share Document