scholarly journals Uniqueness of the Inflationary Higgs Scalar for Neutron Stars and Failure of Non-Inflationary Approximations

Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 32
Author(s):  
Vasilis K. Oikonomou

Neutron stars are perfect candidates to investigate the effects of a modified gravity theory, since the curvature effects are significant and more importantly, potentially testable. In most cases studied in the literature in the context of massive scalar-tensor theories, inflationary models were examined. The most important of scalar-tensor models is the Higgs model, which, depending on the values of the scalar field, can be approximated by different scalar potentials, one of which is the inflationary. Since it is not certain how large the values of the scalar field will be at the near vicinity and inside a neutron star, in this work we will answer the question, which potential form of the Higgs model is more appropriate in order for it to describe consistently a static neutron star. As we will show numerically, the non-inflationary Higgs potential, which is valid for certain values of the scalar field in the Jordan frame, leads to extremely large maximum neutron star masses; however, the model is not self-consistent, because the scalar field approximation used for the derivation of the potential, is violated both at the center and at the surface of the star. These results shows the uniqueness of the inflationary Higgs potential, since it is the only approximation for the Higgs model, that provides self-consistent results.

2004 ◽  
Vol 13 (07) ◽  
pp. 1255-1259 ◽  
Author(s):  
EDUARDO LÜTZ ◽  
MOISÉS RAZEIRA ◽  
CÉSAR A. Z. VASCONCELLOS ◽  
MANFRED DILLIG

Based on non-crossed, crossed and correlated ππ exchanges with irreducible N, Δ intermediate states, we predict an isovector component for the σ meson. We study dense hadronic matter in a generalized relativistic mean field approach with nonlinear self-couplings of the I=0,1 components of the scalar field and compare its predictions for neutron star properties with results from different models found in the literature.


2014 ◽  
Vol 23 (11) ◽  
pp. 1450090 ◽  
Author(s):  
Joseph Sultana ◽  
Benjamin Bose ◽  
Demosthenes Kazanas

Neutron star models are studied in the context of scalar–tensor theories of gravity in the presence of a conformally coupled scalar field, using two different numerical equations of state (EoS) representing different degrees of stiffness. In both cases we obtain a complete solution by matching the interior numerical solution of the coupled Einstein-scalar field hydrostatic equations, with an exact metric on the surface of the star. These are then used to find the effect of the scalar field and its coupling to geometry, on the neutron star structure, particularly the maximum neutron star mass and radius. We show that in the presence of a conformally coupled scalar field, neutron stars are less dense and have smaller masses and radii than their counterparts in the minimally coupled case, and the effect increases with the magnitude of the scalar field at the center of the star.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Hsin-Chia Cheng ◽  
Yi Chung

Abstract Composite Higgs models provide an attractive solution to the hierarchy problem. However, many realistic models suffer from tuning problems in the Higgs potential. There are often large contributions from the UV dynamics of the composite resonances to the Higgs potential, and tuning between the quadratic term and the quartic term is required to separate the electroweak breaking scale and the compositeness scale. We consider a composite Higgs model based on the SU(6)/Sp(6) coset, where an enhanced symmetry on the fermion resonances can minimize the Higgs quadratic term. Moreover, a Higgs quartic term from the collective symmetry breaking of the little Higgs mechanism can be realized by the partial compositeness couplings between elementary Standard Model fermions and the composite operators, without introducing new elementary fields beyond the Standard Model and the composite sector. The model contains two Higgs doublets, as well as several additional pseudo-Nambu-Goldstone bosons. To avoid tuning, the extra Higgs bosons are expected to be relatively light and may be probed in the future LHC runs. The deviations of the Higgs couplings and the weak gauge boson couplings also provide important tests as they are expected to be close to the current limits in this model.


Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 127
Author(s):  
Yuri V. Grats ◽  
Pavel Spirin

The effects of vacuum polarization associated with a massless scalar field near pointlike source with a zero-range potential in three spatial dimensions are analyzed. The “physical” approach consists in the usage of direct delta-potential as a model of pointlike interaction. We use the Perturbation theory in the Fourier space with dimensional regularization of the momentum integrals. In the weak-field approximation, we compute the effects of interest. The “mathematical” approach implies the self-adjoint extension technique. In the Quantum-Field-Theory framework we consider the massless scalar field in a 3-dimensional Euclidean space with an extracted point. With appropriate boundary conditions it is considered an adequate mathematical model for the description of a pointlike source. We compute the renormalized vacuum expectation value ⟨ϕ2(x)⟩ren of the field square and the renormalized vacuum averaged of the scalar-field’s energy-momentum tensor ⟨Tμν(x)⟩ren. For the physical interpretation of the extension parameter we compare these results with those of perturbative computations. In addition, we present some general formulae for vacuum polarization effects at large distances in the presence of an abstract weak potential with finite-sized compact support.


Universe ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 97
Author(s):  
Nils Andersson

We provide a bird’s-eye view of neutron-star seismology, which aims to probe the extreme physics associated with these objects, in the context of gravitational-wave astronomy. Focussing on the fundamental mode of oscillation, which is an efficient gravitational-wave emitter, we consider the seismology aspects of a number of astrophysically relevant scenarios, ranging from transients (like pulsar glitches and magnetar flares), to the dynamics of tides in inspiralling compact binaries and the eventual merged object and instabilities acting in isolated, rapidly rotating, neutron stars. The aim is not to provide a thorough review, but rather to introduce (some of) the key ideas and highlight issues that need further attention.


1980 ◽  
Vol 4 (1) ◽  
pp. 49-50
Author(s):  
R. A. Gingold ◽  
J. J. Monaghan

Misner Thorne and Wheeler (1973), (page 629) suggested that a freshly formed White Dwarf star of several solar masses would, if slowly — rotating, collapse to form a neutron star pancake which would become unstable and eventually produce several, possibly colliding, neutron stars.


2013 ◽  
Vol 88 (4) ◽  
Author(s):  
Kenta Hotokezaka ◽  
Kenta Kiuchi ◽  
Koutarou Kyutoku ◽  
Takayuki Muranushi ◽  
Yu-ichiro Sekiguchi ◽  
...  

2017 ◽  
Vol 26 (04) ◽  
pp. 1750015 ◽  
Author(s):  
Yeunhwan Lim ◽  
Chang Ho Hyun ◽  
Chang-Hwan Lee

In this paper, we investigate the cooling of neutron stars with relativistic and nonrelativistic models of dense nuclear matter. We focus on the effects of uncertainties originated from the nuclear models, the composition of elements in the envelope region, and the formation of superfluidity in the core and the crust of neutron stars. Discovery of [Formula: see text] neutron stars PSR J1614−2230 and PSR J0343[Formula: see text]0432 has triggered the revival of stiff nuclear equation of state at high densities. In the meantime, observation of a neutron star in Cassiopeia A for more than 10 years has provided us with very accurate data for the thermal evolution of neutron stars. Both mass and temperature of neutron stars depend critically on the equation of state of nuclear matter, so we first search for nuclear models that satisfy the constraints from mass and temperature simultaneously within a reasonable range. With selected models, we explore the effects of element composition in the envelope region, and the existence of superfluidity in the core and the crust of neutron stars. Due to uncertainty in the composition of particles in the envelope region, we obtain a range of cooling curves that can cover substantial region of observation data.


Sign in / Sign up

Export Citation Format

Share Document