jordan frame
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 24)

H-INDEX

15
(FIVE YEARS 3)

Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 32
Author(s):  
Vasilis K. Oikonomou

Neutron stars are perfect candidates to investigate the effects of a modified gravity theory, since the curvature effects are significant and more importantly, potentially testable. In most cases studied in the literature in the context of massive scalar-tensor theories, inflationary models were examined. The most important of scalar-tensor models is the Higgs model, which, depending on the values of the scalar field, can be approximated by different scalar potentials, one of which is the inflationary. Since it is not certain how large the values of the scalar field will be at the near vicinity and inside a neutron star, in this work we will answer the question, which potential form of the Higgs model is more appropriate in order for it to describe consistently a static neutron star. As we will show numerically, the non-inflationary Higgs potential, which is valid for certain values of the scalar field in the Jordan frame, leads to extremely large maximum neutron star masses; however, the model is not self-consistent, because the scalar field approximation used for the derivation of the potential, is violated both at the center and at the surface of the star. These results shows the uniqueness of the inflationary Higgs potential, since it is the only approximation for the Higgs model, that provides self-consistent results.


Universe ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 14
Author(s):  
Matteo Galaverni ◽  
Gabriele Gionti S. J.

We analyze the Hamiltonian equivalence between Jordan and Einstein frames considering a mini-superspace model of the flat Friedmann–Lemaître–Robertson–Walker (FLRW) Universe in the Brans–Dicke theory. Hamiltonian equations of motion are derived in the Jordan, Einstein, and anti-gravity (or anti-Newtonian) frames. We show that, when applying the Weyl (conformal) transformations to the equations of motion in the Einstein frame, we did not obtain the equations of motion in the Jordan frame. Vice-versa, we re-obtain the equations of motion in the Jordan frame by applying the anti-gravity inverse transformation to the equations of motion in the anti-gravity frame.


2021 ◽  
Vol 36 (37) ◽  
Author(s):  
Nashiba Parbin ◽  
Umananda Dev Goswami

In this paper, we conduct a study on the scalar field obtained from [Formula: see text] gravity via Weyl transformation of the spacetime metric [Formula: see text] from the Jordan frame to the Einstein frame. The scalar field is obtained as a result of the modification in the geometrical part of Einstein’s field equation of General Relativity. For the Hu–Sawicki model of [Formula: see text] gravity, we find the effective potential of the scalar field and calculate its mass. Our study shows that the scalar field (also named as scalaron) obtained from this model has the chameleonic property, i.e. the scalaron becomes light in the low-density region, while it becomes heavy in the high-density region of matter. Then it is found that the scalaron can be regarded as a dark matter (DM) candidate since the scalaron mass is found to be quite close to the mass of ultralight axions, a prime DM candidate. Thus, the scalaron in the Hu–Sawicki model of [Formula: see text] gravity behaves as DM. Further, a study on the evolution of the scalaron mass with the redshift is also carried out, which depicts that scalaron becomes light with expansion of the Universe and with different rates at different stages of the Universe.


2021 ◽  
Vol 2021 (12) ◽  
pp. 016
Author(s):  
Dipayan Mukherjee ◽  
H.K. Jassal ◽  
Kinjalk Lochan

Abstract The accelerated expansion of the universe demands presence of an exotic matter, namely the dark energy. Though the cosmological constant fits this role very well, a scalar field minimally coupled to gravity, or quintessence, can also be considered as a viable alternative for the cosmological constant. We study f(R) gravity models which can lead to an effective description of dark energy implemented by quintessence fields in Einstein gravity, using the Einstein frame-Jordan frame duality. For a family of viable quintessence models, the reconstruction of the f(R) function in the Jordan frame consists of two parts. We first obtain a perturbative solution of f(R) in the Jordan frame, applicable near the present epoch. Second, we obtain an asymptotic solution for f(R), consistent with the late time limit of the Einstein frame if the quintessence field drives the universe. We show that for certain class of viable quintessence models, the Jordan frame universe grows to a maximum finite size, after which it begins to collapse back. Thus, there is a possibility that in the late time limit where the Einstein frame universe continues to expand, the Jordan frame universe collapses. The condition for this expansion-collapse duality is then generalized to time varying equations of state models, taking into account the presence of non-relativistic matter or any other component in the Einstein frame universe. This mapping between an expanding geometry and a collapsing geometry at the field equation level may have interesting potential implications on the growth of perturbations therein at late times.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1364
Author(s):  
Antonios Mitsopoulos ◽  
Michael Tsamparlis ◽  
Genly Leon ◽  
Andronikos Paliathanasis

The derivation of conservation laws and invariant functions is an essential procedure for the investigation of nonlinear dynamical systems. In this study, we consider a two-field cosmological model with scalar fields defined in the Jordan frame. In particular, we consider a Brans–Dicke scalar field theory and for the second scalar field we consider a quintessence scalar field minimally coupled to gravity. For this cosmological model, we apply for the first time a new technique for the derivation of conservation laws without the application of variational symmetries. The results are applied for the derivation of new exact solutions. The stability properties of the scaling solutions are investigated and criteria for the nature of the second field according to the stability of these solutions are determined.


Author(s):  
Amin Salehi

Scalar–tensor theories of gravity can be formulated in the Einstein frame or in the Jordan frame (JF) which are related with each other by conformal transformations. Although the two frames describe the same physics and are equivalent, the stability of the field equations in the two frames is not the same. Here, we implement dynamical system and phase space approach as a robustness tool to investigate this issue. We concentrate on the Brans–Dicke theory in a Friedmann–Lemaitre–Robertson–Walker universe, but the results can easily be generalized. Our analysis shows that while there is a one-to-one correspondence between critical points in two frames and each critical point in one frame is mapped to its corresponds in another frame, however, stability of a critical point in one frame does not guarantee the stability in another frame. Hence, an unstable point in one frame may be mapped to a stable point in another frame. All trajectories between two critical points in phase space in one frame are different from their corresponding in other ones. This indicates that the dynamical behavior of variables and cosmological parameters is different in two frames. Hence, for those features of the study, which focus on observational measurements, we must use the JF where experimental data have their usual interpretation.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yunlong Zheng

Abstract Two types of mimetic gravity models with higher derivatives of the mimetic field are analyzed in the Hamiltonian formalism. For the first type of mimetic gravity, the Ricci scalar only couples to the mimetic field and we demonstrate the number of degrees of freedom (DOFs) is three. Then in both Einstein frame and Jordan frame, we perform the Hamiltonian analysis for the extended mimetic gravity with higher derivatives directly coupled to the Ricci scalar. We show that different from previous studies working at the cosmological perturbation level, where only three propagating DOFs show up, this generalized mimetic model, in general, has four DOFs. To understand this discrepancy, we consider the unitary gauge and find out that the number of DOFs reduces to three. We conclude that the reason why this system looks peculiar is that the Dirac matrix of all secondary constraints becomes singular in the unitary gauge, resulting in extra secondary constraints and thus reducing the number of DOFs. Furthermore, we give a simple example of a dynamic system to illustrate how gauge choice can affect the number of secondary constraints as well as the DOFs when the rank of the Dirac matrix is gauge dependent.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Dhruba Jyoti Gogoi ◽  
Umananda Dev Goswami

AbstractIn this paper, we have introduced a new f(R) gravity model as an attempt to have a model with more parametric control, so that the model can be used to explain the existing problems as well as to explore new directions in physics of gravity, by properly constraining it with recent observational data. Here basic aim is to study the properties of Gravitational Waves (GWs) in this new model. In f(R) gravity metric formalism, the model shows the existence of scalar degree of freedom as like other f(R) gravity models. Due to this reason, there is a scalar mode of polarization of GWs present in the theory. This polarization mode exists in a mixed state, of which one is transverse massless breathing mode with non-vanishing trace and the other is massive longitudinal mode. The longitudinal mode being massive, travels at speed less than the usual tensor modes found in General Relativity (GR). Moreover, for a better understanding of the model, we have studied the potential and mass of scalar graviton in both Jordan frame and Einstein frame. This model can pass the solar system tests and can explain primordial and present dark energy. Also, we have put constraints on the model. It is found that the correlation function for the third mode of polarization under certain mass scale predicted by the model agrees well with the recent data of Pulsar Timing Arrays. It seems that this new model would be useful in dealing with different existing issues in the areas of astrophysics and cosmology.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
R. Kh. Karimov ◽  
R. N. Izmailov ◽  
A. A. Potapov ◽  
K. K. Nandi

AbstractWe first advance a mathematical novelty that the three geometrically and topologically distinct objects mentioned in the title can be exactly obtained from the Jordan frame vacuum Brans I solution by a combination of coordinate transformations, trigonometric identities and complex Wick rotation. Next, we study their respective accretion properties using the Page–Thorne model which studies accretion properties exclusively for $$r\ge r_{\text {ms}}$$ r ≥ r ms (the minimally stable radius of particle orbits), while the radii of singularity/throat/horizon $$r<r_{\text {ms}}$$ r < r ms . Also, its Page–Thorne efficiency $$\epsilon $$ ϵ is found to increase with decreasing $$r_{\text {ms}}$$ r ms and also yields $$\epsilon =0.0572$$ ϵ = 0.0572 for Schwarzschild black hole (SBH). But in the singular limit $$r\rightarrow r_{s}$$ r → r s (radius of singularity), we have $$\epsilon \rightarrow 1$$ ϵ → 1 giving rise to $$100 \%$$ 100 % efficiency in agreement with the efficiency of the naked singularity constructed in [10]. We show that the differential accretion luminosity $$\frac{d{\mathcal {L}}_{\infty }}{d\ln {r}}$$ d L ∞ d ln r of Buchdahl naked singularity (BNS) is always substantially larger than that of SBH, while Eddington luminosity at infinity $$L_{\text {Edd}}^{\infty }$$ L Edd ∞ for BNS could be arbitrarily large at $$r\rightarrow r_{s}$$ r → r s due to the scalar field $$\phi $$ ϕ that is defined in $$(r_{s}, \infty )$$ ( r s , ∞ ) . It is concluded that BNS accretion profiles can still be higher than those of regular objects in the universe.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Yohei Ema ◽  
Kyohei Mukaida ◽  
Jorinde van de Vis

Abstract We point out that a model with scalar fields with a large nonminimal coupling to the Ricci scalar, such as Higgs inflation, can be regarded as a nonlinear sigma model (NLSM). With the inclusion of not only the scalar fields but also the conformal mode of the metric, our definition of the target space of the NLSM is invariant under the frame transformation. We show that the σ-meson that linearizes this NLSM to be a linear sigma model (LSM) corresponds to the scalaron, the degree of freedom associated to the R2 term in the Jordan frame. We demonstrate that quantum corrections inevitably induce this σ-meson in the large-N limit, thus providing a frame independent picture for the emergence of the scalaron. The resultant LSM only involves renormalizable interactions and hence its perturbative unitarity holds up to the Planck scale unless it hits a Landau pole, which is in agreement with the renormalizability of quadratic gravity.


Sign in / Sign up

Export Citation Format

Share Document