Invariance properties of a one-dimensional diffusion equation with a fractal derivative in time

Author(s):  
A.V. Shapovalov ◽  
◽  
R. Brons
2018 ◽  
Vol 284 ◽  
pp. 1230-1234
Author(s):  
Mikhail V. Maisuradze ◽  
Alexandra A. Kuklina

The simplified algorithm of the numerical solution of the differential diffusion equation is presented. The solution is based on the one-dimensional diffusion model with the third kind boundary conditions and the finite difference method. The proposed approach allows for the quick and precise assessment of the carburizing process parameters – temperature and time.


A theory is presented for the behaviour under self-weight of inextensible but perfectly flexible membranes supported in a vertical plane. Slack in the membrane manifests itself in the formation of (curved) wrinkle lines whose determination is the prime objective. The equilibrium and strain conditions are derived and solutions are given for several simple cases. It is shown that the wrinkle lines satisfy the one-dimensional diffusion equation and hence there are analogies, for example, with heat flow through a slab.


Sign in / Sign up

Export Citation Format

Share Document