scholarly journals Classification of Hyperspectral Images with High Spatial Resolution

Author(s):  
Pavel V. Melnikov ◽  
◽  
Sergey A. Rylov ◽  
Igor A. Pestunov ◽  
◽  
...  
2021 ◽  
pp. 107949
Author(s):  
Yifan Fan ◽  
Xiaotian Ding ◽  
Jindong Wu ◽  
Jian Ge ◽  
Yuguo Li

2012 ◽  
Vol 5 (2) ◽  
pp. 155-163 ◽  
Author(s):  
Diego J. Bentivegna ◽  
Reid J. Smeda ◽  
Cuizhen Wang

AbstractCutleaf teasel is an invasive, biennial plant that poses a significant threat to native species along roadsides in Missouri. Flowering plants, together with understory rosettes, often grow in dense patches. Detection of cutleaf teasel patches and accurate assessment of the infested area can enable targeted management along highways. Few studies have been conducted to identify specific species among a complex of vegetation composition along roadsides. In this study, hyperspectral images (63 bands in visible to near-infrared spectral region) with high spatial resolution (1 m) were analyzed to detect cutleaf teasel in two areas along a 6.44-km (4-mi) section of Interstate I-70 in mid Missouri. The identified classes included cutleaf teasel, bare soil, tree/shrub, grass/other broadleaf plants, and water. Classification of cutleaf teasel reached a user's accuracy of 82 to 84% and a producer's accuracy of 89% in the two sites. The conditional κ value was around 0.9 in both sites. The image-classified cutleaf teasel map provides a practical mechanism for identifying locations and extents of cutleaf teasel infestation so that specific cutleaf teasel management techniques can be implemented.Cutleaf teasel is an exotic weed that infests roadside environments in Missouri. As a growing biennial, the plant develops as a rosette during the first year and bolts during the second. Dense patches contain flowering plants with understory rosettes. The objective of this work was to develop approaches for detecting cutleaf teasel patches with accurate assessment in a complex of species along a roadside. Thus, management of cutleaf teasel could be located at specific sites. Two hyperspectral images (63 bands with 1-m spatial resolution) were analyzed to detect cutleaf teasel along the Interstate Highway I-70 in mid Missouri. Classification of cutleaf teasel reached a user's accuracy of 82 to 84% and a producer's accuracy of 89% at the two sites. The image-classified teasel map provides a practical mechanism for identifying the locations and extents of cutleaf teasel infestation so that specific management techniques can be implemented.


2020 ◽  
Vol 12 (21) ◽  
pp. 3608
Author(s):  
Kelsey Warkentin ◽  
Douglas Stow ◽  
Kellie Uyeda ◽  
John O’Leary ◽  
Julie Lambert ◽  
...  

The purpose of this study is to map shrub distributions and estimate shrub cover fractions based on the classification of high-spatial-resolution aerial orthoimagery and light detection and ranging (LiDAR) data for portions of the highly disturbed coastal sage scrub landscapes of San Clemente Island, California. We utilized nine multi-temporal aerial orthoimage sets for the 2010 to 2018 period to map shrub cover. Pixel-based and object-based image analysis (OBIA) approaches to image classification of growth forms were tested. Shrub fractional cover was estimated for 10, 20 and 40 m grid sizes and assessed for accuracy. The most accurate estimates of shrub cover were generated with the OBIA method with both multispectral brightness values and canopy height estimates from a normalized digital surface model (nDSM). Fractional cover products derived from 2015 and 2017 orthoimagery with nDSM data incorporated yielded the highest accuracies. Major factors that influenced the accuracy of shrub maps and fractional cover estimates include the time of year and spatial resolution of the imagery, the type of classifier, feature inputs to the classifier, and the grid size used for fractional cover estimation. While tracking actual changes in shrub cover over time was not the purpose, this study illustrates the importance of consistent mapping approaches and high-quality inputs, including very-high-spatial-resolution imagery and an nDSM.


Sign in / Sign up

Export Citation Format

Share Document