scholarly journals Plant drought impact detection using ultra-high spatial resolution hyperspectral images and machine learning

Author(s):  
Phuong D. Dao ◽  
Yuhong He ◽  
Cameron Proctor
2019 ◽  
Vol 11 (2) ◽  
pp. 185 ◽  
Author(s):  
Christopher A. Ramezan ◽  
Timothy A. Warner ◽  
Aaron E. Maxwell

High spatial resolution (1–5 m) remotely sensed datasets are increasingly being used to map land covers over large geographic areas using supervised machine learning algorithms. Although many studies have compared machine learning classification methods, sample selection methods for acquiring training and validation data for machine learning, and cross-validation techniques for tuning classifier parameters are rarely investigated, particularly on large, high spatial resolution datasets. This work, therefore, examines four sample selection methods—simple random, proportional stratified random, disproportional stratified random, and deliberative sampling—as well as three cross-validation tuning approaches—k-fold, leave-one-out, and Monte Carlo methods. In addition, the effect on the accuracy of localizing sample selections to a small geographic subset of the entire area, an approach that is sometimes used to reduce costs associated with training data collection, is investigated. These methods are investigated in the context of support vector machines (SVM) classification and geographic object-based image analysis (GEOBIA), using high spatial resolution National Agricultural Imagery Program (NAIP) orthoimagery and LIDAR-derived rasters, covering a 2,609 km2 regional-scale area in northeastern West Virginia, USA. Stratified-statistical-based sampling methods were found to generate the highest classification accuracy. Using a small number of training samples collected from only a subset of the study area provided a similar level of overall accuracy to a sample of equivalent size collected in a dispersed manner across the entire regional-scale dataset. There were minimal differences in accuracy for the different cross-validation tuning methods. The processing time for Monte Carlo and leave-one-out cross-validation were high, especially with large training sets. For this reason, k-fold cross-validation appears to be a good choice. Classifications trained with samples collected deliberately (i.e., not randomly) were less accurate than classifiers trained from statistical-based samples. This may be due to the high positive spatial autocorrelation in the deliberative training set. Thus, if possible, samples for training should be selected randomly; deliberative samples should be avoided.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yang Junting ◽  
Li Xiaosong ◽  
Wu Bo ◽  
Wu Junjun ◽  
Sun Bin ◽  
...  

Soil organic matter (SOM) content is an effective indicator of desertification; thus, monitoring its spatial‒temporal changes on a large scale is important for combating desertification. However, mapping SOM content in desertified land is challenging owing to the heterogeneous landscape, relatively low SOM content and vegetation coverage. Here, we modeled the SOM content in topsoil (0–20 cm) of desertified land in northern China by employing a high spatial resolution dataset and machine learning methods, with an emphasis on quarterly green and non-photosynthetic vegetation information, based on the Google Earth Engine (GEE). The results show: 1) the machine learning model performed better than the traditional multiple linear regression model (MLR) for SOM content estimation, and the Random Forest (RF) model was more accurate than the Support Vector Machine (SVM) model; 2) the quarterly information regarding green vegetation and non-photosynthetic were identified as key covariates for estimating the SOM content in desertified land, and an obvious improvement could be observed after simultaneously combining the Dead Fuel Index (DFI) and Normalized Difference Vegetation Index (NDVI) of the four quarters (R2 increased by 0.06, the root mean square error decreased by 0.05, the ratio of prediction deviation increased by 0.2, and the ratio of performance to interquartile distance increased by 0.5). In particular, the effects of the DFI in Q1 (the first quarter) and Q2 (the second quarter) on estimating low SOM content (<1%) were identified; finally, a timely (2019) and high spatial resolution (30 m) SOM content map for the desertified land in northern China was drawn which shows obvious advantages over existing SOM products, thus providing key data support for monitoring and combating desertification.


2021 ◽  
Vol 13 (11) ◽  
pp. 2099
Author(s):  
Felix Greifeneder ◽  
Claudia Notarnicola ◽  
Wolfgang Wagner

Due to its relation to the Earth’s climate and weather and phenomena like drought, flooding, or landslides, knowledge of the soil moisture content is valuable to many scientific and professional users. Remote-sensing offers the unique possibility for continuous measurements of this variable. Especially for agriculture, there is a strong demand for high spatial resolution mapping. However, operationally available soil moisture products exist with medium to coarse spatial resolution only (≥1 km). This study introduces a machine learning (ML)—based approach for the high spatial resolution (50 m) mapping of soil moisture based on the integration of Landsat-8 optical and thermal images, Copernicus Sentinel-1 C-Band SAR images, and modelled data, executable in the Google Earth Engine. The novelty of this approach lies in applying an entirely data-driven ML concept for global estimation of the surface soil moisture content. Globally distributed in situ data from the International Soil Moisture Network acted as an input for model training. Based on the independent validation dataset, the resulting overall estimation accuracy, in terms of Root-Mean-Squared-Error and R², was 0.04 m3·m−3 and 0.81, respectively. Beyond the retrieval model itself, this article introduces a framework for collecting training data and a stand-alone Python package for soil moisture mapping. The Google Earth Engine Python API facilitates the execution of data collection and retrieval which is entirely cloud-based. For soil moisture retrieval, it eliminates the requirement to download or preprocess any input datasets.


Sign in / Sign up

Export Citation Format

Share Document