scholarly journals Evaluation of Parametric Significance in Friction Welding Process for AA2024-T6 and Zr705 Alloy using Finite Element Analysis

Author(s):  
Chennakesava R Alavala ◽  
Author(s):  
N. RAJESH JESUDOSS HYNES ◽  
P. NAGARAJ ◽  
S. JOSHUA BASIL

The joining of ceramic and metals can be done by different techniques such as ultrasonic joining, brazing, transient liquid phase diffusion bonding, and friction welding. Friction Welding is a solid state joining process that generates heat through mechanical friction between a moving workpiece and a stationary component. In this article, numerical simulation on thermal analysis of friction welded ceramic/metal joint has been carried out by using Finite Element Analysis (FEA) software. The finite element analysis helps in better understanding of the friction welding process of joining ceramics with metals and it is important to calculate temperature and stress fields during the welding process. Based on the obtained temperature distribution the graphs were plotted between the lengths of the joint corresponding to the temperatures. To increase the wettability, aluminium sheet was used as an interlayer. Hence, numerical simulation of friction welding process is done by varying the interlayer sheet thickness. Transient thermal analysis had been carried out for each cases and temperature distribution was studied. From the simulation studies, it is found that the increase in interlayer thickness reduces the heat affected zone and eventually improves the joint efficiency of alumina/aluminum alloy joints.


2016 ◽  
Vol 707 ◽  
pp. 154-158
Author(s):  
Somsak Limwongsakorn ◽  
Wasawat Nakkiew ◽  
Adirek Baisukhan

The proposed finite element analysis (FEA) model was constructed using FEA simulation software, ANSYS program, for determining effects of corrosion fatigue (CF) from TIG welding process on AISI 304 stainless steel workpiece. The FEA model of TIG welding process was developed from Goldak's double ellipsoid moving heat source. In this paper, the residual stress results obtained from the FEA model were consistent with results from the X-ray diffraction (XRD) method. The residual stress was further used as an input in the next step of corrosion fatigue analysis. The predictive CF life result obtained from the FEA CF model were consistent with the value obtained from stress-life curve (S-N curve) from the reference literaturature. Therefore, the proposed FEA of CF model was then used for predicting the corrosion fatigue life on TIG welding workpiece, the results from the model showed the corrosion fatigue life of 1,794 cycles with testing condition of the frequency ( f ) = 0.1 Hz and the equivalent load of 67.5 kN (equal to 150 MPa) with R = 0.25.


Author(s):  
Shivdayal Patel ◽  
B. P. Patel ◽  
Suhail Ahmad

Welding is one of the most used joining methods in the ship industry. However, residual stresses are induced in the welded joints due to the rapid heating and cooling leading to inhomogenously distributed dimensional changes and non-uniform plastic and thermal strains. A number of factors, such as welding speed, boundary conditions, weld geometry, weld thickness, welding current/voltage, number of weld passes, pre-/post-heating etc, influence the residual stress distribution. The main aim of this work is to estimate the residual stresses in welded joints through finite element analysis and to investigate the effects of boundary conditions, welding speed and plate thickness on through the thickness/surface distributions of residual stresses. The welding process is simulated using 3D Finite element model in ABAQUS FE software in two steps: 1. Transient thermal analysis and 2. Quasi-static thermo-elasto-plastic analysis. The normal residual stresses along and across the weld in the weld tow region are found to be significant with nonlinear distribution. The residual stresses increase with the increase in the thickness of the plates being welded. The nature of the normal residual stress along the weld is found to be tensile-compressive-tensile and the nature of normal residual stress across the weld is found to be tensile along the thickness direction.


2019 ◽  
Vol 796 ◽  
pp. 175-182
Author(s):  
Mohamad Nizam Ayof ◽  
Ruzaini Mohd Nawi ◽  
Nur Izan Syahriah Hussein ◽  
Nor Zulaikha Zainol

Welding process is an efficient joining process of metals that is achieved by gas metal arc welding (GMAW) process. Localized heating during welding process can result in distortion of the welded plate. The estimation of magnitude and distribution of distortion are important to maintain the quality of products. Finite element method is implemented to investigate the distortions behavior of thin steel plate, cold rolled (SPCC) material in lap joint using GMAW process. A three-dimensional, two-step thermomechanical finite element model study was applied to analyze and evaluate distortion behavior in lap joint. The result of distortion from finite element analysis (FEA) was compared to experimental data to validate the accuracy of the method.


2015 ◽  
Vol 799-800 ◽  
pp. 428-433 ◽  
Author(s):  
Somsak Limwongsakorn ◽  
Wasawat Nakkiew ◽  
Adirek Baisukhan

Residual stress occured in welding process generally causes reduction in the strength of welded joints, shortens the fatigue life, and brings about the distortion of the workpiece. In this research, finite element analysis (FEA) model of the butt-joint tungsten inert gas (TIG) welding process with the application of birth-death technique was presented. The material used in this research was AISI 304 stainless steel. The FEA model was constructed on a simulation software, ANSYS. The predictive residual stress from a welding condition obtained from the FEA model was verified by the value measured from X-ray diffraction (XRD) machine. Effects of four welding process parameters: efficiency, welding speed, arc current, and arc voltage on residual stress at the center of the welded joint and at the heated affected zone (HAZ) were investigated. The welding conditions were generated by varying these four main effects according to the Taguchi design of experiment technique (L8 orthogonal array). In general, compressive residual stress is beneficial to the strength and fatigue life of welded joints. For the Taguchi method the larger is better constraint was used; larger means higher magnitude of compressive residual stress. The predictive residual stress results obtained from the FEA model were consistent with the values obtained from the XRD measurement. The result suggested that the most significant effect was the arc current, followed by the arc voltage, welding speed, and the efficiency. The response optimizer in MINITAB software showed the optimal magnitude of compressive residual stress values of about 52 MPa obtained at the arc current of 126 Ampere, arc voltage of 17 Volts, welding speed of 110 mm/min, and the efficiency of 80%.


Sign in / Sign up

Export Citation Format

Share Document