Combined Cycle Power Plant Performance Enhancement Based on Inlet Air Cooling Techniques: A Technical Review

Author(s):  
Mude Murali Mohan Naik ◽  
V. S. S. Murty ◽  
B. Durga Prasad ◽  
2010 ◽  
Vol 44-47 ◽  
pp. 1240-1245 ◽  
Author(s):  
Hong Zeng ◽  
Xiao Ling Zhao ◽  
Jun Dong Zhang

For combined-cycle power plant performance analysis, a ship power plant mathematical model is developed, including diesel engine, controllable pitch propeller, exhaust gas boiler, turbine generator and shaft generator models. The simulation performance characteristic curves of diesel engine under various loads are given. Comparison of simulation results and experimental data shows the model can well predict the performance of diesel engine in various operating conditions. The specific fuel oil consumption contours of combined-cycle power plant and the relations between engine operating conditions and steam cycle parameters are given. The influence of diesel engine operating conditions to the overall performance of combined-cycle power plant is discussed.


Author(s):  
Mihir Acharya ◽  
Lalatendu Pattanayak ◽  
Hemant Gajjar ◽  
Frank Elbracht ◽  
Sandeep Asthana

With gas becoming a fuel of choice for clean energy, Liquefied Natural Gas (LNG) is being transported and re-gasification terminals are being set up at several locations. Re-gasification of LNG leads to availability of considerable cold-energy which can be utilized to gain power and efficiency in a Gas Turbine (GT) based Power Plant. With a number of LNG Re-gasification Terminals coming up in India & around the globe, setting up of a high efficiency CCPP adjacent to the terminal considering utilization of the cold energy to augment its performance, and also save energy towards re-gasification of LNG, provides a feasible business opportunity. Thermodynamic analysis and major applications of the LNG re-gasification cold energy in Gas Turbine based power generation cycle, are discussed in this paper. The feasibility of cooling GT inlet air by virtue of the cold energy of Liquefied LNG to increase power output of a Combined Cycle Power Plant (CCPP) for different ambient conditions is analyzed and also the effect on efficiency is discussed. The use of cold energy in condenser cooling water circulating system to improve efficiency of the CCPP is also analyzed. Air cooling capacity and power augmentation for a combined cycle power plant based on the advanced class industrial heavy duty gas turbine are demonstrated as a function of the ambient temperature and humidity. The economic feasibility of utilizing the cold energy is also deliberated.


2021 ◽  
Vol 347 ◽  
pp. 00003
Author(s):  
Rushavya Naidu ◽  
Wim Fuls

The objective of this project was to develop a model of a combined-cycle power plant in Flownex which can be solved in off-design conditions in order to compare it to plant data. The verification of this model will show that Flownex can be used to effectively and efficiently model a combined-cycle power plant. The process of development of the final Flownex model was achieved using various additional software. Initially, an analytical model was developed in Mathcad (software used for engineering calculations). Thereafter, a model was built in Virtual Plant, a thermodynamic modelling software for assessing plant performance. Finally, the Flownex model was designed. For the single, double, and triple pressure combined-cycle power plant systems, the analytical, Virtual Plant and Flownex models were compared. The results of all the models agreed closely with one another. The triple-pressure design and off-design Virtual Plant and Flownex models were also compared to plant data and it was concluded that Flownex was successful in modelling the design and offdesign conditions of a combined-cycle power plant.


Sign in / Sign up

Export Citation Format

Share Document